Abstract: The purpose of this paper is to evaluate the suitability of using trass as a supplementary cementing material in pervious concrete. OPC (Ordinary Portland Cement) was replaced in the concrete mix by 15%, ...Abstract: The purpose of this paper is to evaluate the suitability of using trass as a supplementary cementing material in pervious concrete. OPC (Ordinary Portland Cement) was replaced in the concrete mix by 15%, 25% and 35% weight percentages and the results were compared with reference mixtures with 100% Portland cement. The variables in this study were trass content, aggregate size and water to cement ratio. Sixteen eases of concrete mixtures were tested to study physical and mechanical properties of hardened concrete, including porosity, permeability, compressive strength, splitting-tensile strength and flexural strength at various ages. Results indicated that mechanical properties of the pervious concrete marginally decreased with the increased content of trass when compared to the reference mixtures. However, at later ages the differences were insignificant.展开更多
This paper discusses mineral composition and pore microstructure characteristics of water-cooled manganese slag and its effects on durability of concrete. The Mn slag has an alveolate pore structure, and the ground Mn...This paper discusses mineral composition and pore microstructure characteristics of water-cooled manganese slag and its effects on durability of concrete. The Mn slag has an alveolate pore structure, and the ground Mn slag is characterized by multiangular shape which consists of a'-C2S, C3M82, CaO.MnO-2SiOu and C2AS. Experimental results show that the Mn slag has potential hydraulic reactivity. Concrete made with Mn slag as supplementary cementitious materials (SCMs) exhibits very low strength loss and weight loss in the synthetic seawater corrosion and freezing-thawing cycle tests. The research provides useful reference for knowing about Mn slag and for applying Mn slag to improve the durability of concrete.展开更多
文摘Abstract: The purpose of this paper is to evaluate the suitability of using trass as a supplementary cementing material in pervious concrete. OPC (Ordinary Portland Cement) was replaced in the concrete mix by 15%, 25% and 35% weight percentages and the results were compared with reference mixtures with 100% Portland cement. The variables in this study were trass content, aggregate size and water to cement ratio. Sixteen eases of concrete mixtures were tested to study physical and mechanical properties of hardened concrete, including porosity, permeability, compressive strength, splitting-tensile strength and flexural strength at various ages. Results indicated that mechanical properties of the pervious concrete marginally decreased with the increased content of trass when compared to the reference mixtures. However, at later ages the differences were insignificant.
基金the National Basic Research Program(973) of China(No.2009CB326200)the Guangxi Technology and Science Development Program (Nos.11107024-4,0842003-17 and 0842003-3A)
文摘This paper discusses mineral composition and pore microstructure characteristics of water-cooled manganese slag and its effects on durability of concrete. The Mn slag has an alveolate pore structure, and the ground Mn slag is characterized by multiangular shape which consists of a'-C2S, C3M82, CaO.MnO-2SiOu and C2AS. Experimental results show that the Mn slag has potential hydraulic reactivity. Concrete made with Mn slag as supplementary cementitious materials (SCMs) exhibits very low strength loss and weight loss in the synthetic seawater corrosion and freezing-thawing cycle tests. The research provides useful reference for knowing about Mn slag and for applying Mn slag to improve the durability of concrete.