The effects of different lateral confinement stress on the fatigue behavior and cumulative damage of plain concrete were investigated experimentally. Eighty 100mm×100mm×100mm specimens of ordinary strength c...The effects of different lateral confinement stress on the fatigue behavior and cumulative damage of plain concrete were investigated experimentally. Eighty 100mm×100mm×100mm specimens of ordinary strength concrete were tested with constant-or variable-amplitude cyclic compression and lateral confinement pressure in two orthogonal directions. A fatigue equation was gained by modifying the classical Aas-Jakobsen S-N equation and used for taking into account the effect of the confined stress on fatigue strength of plain concrete. The present study indicates that the fatigue failure is greatly influenced by the sequence of applied variable-amplitude fatigue loading, and Miner’s rule is inapplicable to predict the residual fatigue life, especially in the sequence of low to high. The present research also shows that the exponent d of the Corten-Dolan’s damage formula is a constant depending on the materials and the levels of load spectrum, and d can be determined through the two-stage fatigue tests. The residual fatigue lives predicted by Corten-Dolan’s damage formula are found to be in good agreement with the results of the experiments.展开更多
Based on the concepts of continuum damage theory,a new plastic damage model for concrete crack failure is developed through studying the basic damage mechanics.Two damage variables,tensile damage variable for tensile ...Based on the concepts of continuum damage theory,a new plastic damage model for concrete crack failure is developed through studying the basic damage mechanics.Two damage variables,tensile damage variable for tensile damage and shear damage variable for compressive damage,are adopted to represent the influence of microscopic damage on material macromechanics properties under tensile and compressive loadings.The yield criteria and flow rule determining the plasticity of concrete are established in the effective stress space,which is convenient to decouple the damage process from the plastic process and calibrate material parameters with experimental results.Meanwhile,the plastic part of the proposed model can be implemented by back-Euler implicit algorithm,and the damage part is explicit.Consequently,there exist robust algorithms for integrating the constitutive relations using finite element method.Comparison with several experimental results shows that the model is capable of simulating the nonlinear performance of concrete under multiaxial stress state and can be applied to practical concrete structures.展开更多
A chemo-damage model for cracking analysis of concrete dams affected by alkali-aggregate reaction (AAR) is proposed, which combines the plastic-damage model for concrete with the AAR kinetics law. The chemo-damage mod...A chemo-damage model for cracking analysis of concrete dams affected by alkali-aggregate reaction (AAR) is proposed, which combines the plastic-damage model for concrete with the AAR kinetics law. The chemo-damage model is first verified by a stress-free AAR expansion test. The expansion deformation obtained from the simulation is in good agreement with the measurement, demonstrating that the proposed model has a sufficient accuracy to predict the expansion of AAR-affected concrete. Subsequently, the expansion deformation and cracking process of the AAR-affected Fontana gravity dam is analyzed. It shows that permanent displacements in the upstream direction and the vertical direction are gradually increased during the long-term operation period, and that their maximal values reach 1.6 and 3.6 cm, respectively. A crack is observed on the wall in the foundation drainage gallery, and extends towards the downstream face of the dam. With the further development of AAR, another crack forms on the downstream face, and then intersects with the gallery crack to penetrate the downstream side profile of the dam. The third crack occurs in the upstream side wall of the gallery and propagates a short distance towards the upstream face of the dam. The simulated cracking pattern in the dam due to AAR is similar to the in situ observation.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.50078010).
文摘The effects of different lateral confinement stress on the fatigue behavior and cumulative damage of plain concrete were investigated experimentally. Eighty 100mm×100mm×100mm specimens of ordinary strength concrete were tested with constant-or variable-amplitude cyclic compression and lateral confinement pressure in two orthogonal directions. A fatigue equation was gained by modifying the classical Aas-Jakobsen S-N equation and used for taking into account the effect of the confined stress on fatigue strength of plain concrete. The present study indicates that the fatigue failure is greatly influenced by the sequence of applied variable-amplitude fatigue loading, and Miner’s rule is inapplicable to predict the residual fatigue life, especially in the sequence of low to high. The present research also shows that the exponent d of the Corten-Dolan’s damage formula is a constant depending on the materials and the levels of load spectrum, and d can be determined through the two-stage fatigue tests. The residual fatigue lives predicted by Corten-Dolan’s damage formula are found to be in good agreement with the results of the experiments.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51139001,51179066,51079046)the Program for New Century Excellent Talents in University (Grant Nos. NCET-11-0628,NCET-10-0359)+1 种基金the Special Fund of State Key Laboratory of China(Grant Nos. 2009586012,2009586912,2010585212)the Fundamental Research Funds for the Central Universities (Grant Nos. 2010B20414,2010B01414,2010B14114)
文摘Based on the concepts of continuum damage theory,a new plastic damage model for concrete crack failure is developed through studying the basic damage mechanics.Two damage variables,tensile damage variable for tensile damage and shear damage variable for compressive damage,are adopted to represent the influence of microscopic damage on material macromechanics properties under tensile and compressive loadings.The yield criteria and flow rule determining the plasticity of concrete are established in the effective stress space,which is convenient to decouple the damage process from the plastic process and calibrate material parameters with experimental results.Meanwhile,the plastic part of the proposed model can be implemented by back-Euler implicit algorithm,and the damage part is explicit.Consequently,there exist robust algorithms for integrating the constitutive relations using finite element method.Comparison with several experimental results shows that the model is capable of simulating the nonlinear performance of concrete under multiaxial stress state and can be applied to practical concrete structures.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51209120, 41274106 and 40974063)
文摘A chemo-damage model for cracking analysis of concrete dams affected by alkali-aggregate reaction (AAR) is proposed, which combines the plastic-damage model for concrete with the AAR kinetics law. The chemo-damage model is first verified by a stress-free AAR expansion test. The expansion deformation obtained from the simulation is in good agreement with the measurement, demonstrating that the proposed model has a sufficient accuracy to predict the expansion of AAR-affected concrete. Subsequently, the expansion deformation and cracking process of the AAR-affected Fontana gravity dam is analyzed. It shows that permanent displacements in the upstream direction and the vertical direction are gradually increased during the long-term operation period, and that their maximal values reach 1.6 and 3.6 cm, respectively. A crack is observed on the wall in the foundation drainage gallery, and extends towards the downstream face of the dam. With the further development of AAR, another crack forms on the downstream face, and then intersects with the gallery crack to penetrate the downstream side profile of the dam. The third crack occurs in the upstream side wall of the gallery and propagates a short distance towards the upstream face of the dam. The simulated cracking pattern in the dam due to AAR is similar to the in situ observation.