期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于SMOTE-XGBoost算法的混凝土强度预测
1
作者 薛飞 《混凝土与水泥制品》 2024年第8期32-36,共5页
基于244组混凝土配合比构建了数据库,采用SMOTE-XGBoost算法对混凝土28 d抗压强度进行了预测。首先通过SMOTE算法对划分的训练集进行平衡处理;然后对比了SMOTE算法平衡前后XGBoost与常用混凝土强度预测模型的评估结果;最后进行了SMOTE-X... 基于244组混凝土配合比构建了数据库,采用SMOTE-XGBoost算法对混凝土28 d抗压强度进行了预测。首先通过SMOTE算法对划分的训练集进行平衡处理;然后对比了SMOTE算法平衡前后XGBoost与常用混凝土强度预测模型的评估结果;最后进行了SMOTE-XGBoost算法的实际工程验证。结果表明:SMOTE-XGBoost算法有效解决了数据不平衡问题,提高了预测模型的精度;相较于其他机器学习模型,SMOTE-XGBoost算法的预测结果较好;应用SMOTE-XGBoost算法对无岳高速WYTJ-07标段工程自制花岗岩混凝土的28 d抗压强度进行了预测,预测结果误差较小,该算法在工程混凝土强度预测方面具有广泛的应用前景。 展开更多
关键词 混凝土28 d抗压强度 机器学习 SMOTE-XGBoost算法 预测
下载PDF
基于遗传算法优化的BP神经网络预测混凝土抗压强度 被引量:5
2
作者 许杰淋 曾强 +1 位作者 余佳蓓 吉旭 《山东化工》 CAS 2014年第10期146-152,共7页
针对传统BP神经网络预测能力的不足,采用遗传算法优化的BP神经网络预测混凝土28d抗压强度,并建立了GA-ANN预测模型。一方面对模型输入项进行灰色关联分析,找出对强度影响的重点关联因素;另一方面,研究了模型在不同输入项组合、不同训练... 针对传统BP神经网络预测能力的不足,采用遗传算法优化的BP神经网络预测混凝土28d抗压强度,并建立了GA-ANN预测模型。一方面对模型输入项进行灰色关联分析,找出对强度影响的重点关联因素;另一方面,研究了模型在不同输入项组合、不同训练组和输出组数、不同网络隐含层节点数的操作条件下,其预测精度有何变化,找出了最优的上述操作条件,减少了预测误差。 展开更多
关键词 BP神经网络 遗传算法 混凝土28d强度 操作条件
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部