期刊文献+
共找到46篇文章
< 1 2 3 >
每页显示 20 50 100
Fenton法处理石化废水混凝泥及其剩余液的氧化回用研究 被引量:3
1
作者 惠祖刚 陈英文 +1 位作者 刘臻臻 沈树宝 《环境污染与防治》 CAS CSCD 北大核心 2011年第3期48-51,共4页
运用Fenton法氧化石化废水混凝泥,考察了体系pH、H2O2投加量、H2O2与Fe^2+的摩尔比(简称H2O2/Fe^2+)、反应时间等因素对氧化效果的影响;并将氧化后的剩余液回用作混凝剂,用于石化废水的混凝,考察了其连续多次氧化回用后的混凝效果... 运用Fenton法氧化石化废水混凝泥,考察了体系pH、H2O2投加量、H2O2与Fe^2+的摩尔比(简称H2O2/Fe^2+)、反应时间等因素对氧化效果的影响;并将氧化后的剩余液回用作混凝剂,用于石化废水的混凝,考察了其连续多次氧化回用后的混凝效果。结果表明,混凝泥的最佳Fenton法氧化条件:pH为3,H2O2投加量为0.1%(体积分数),H2O2/Fe^2+为7∶1,反应时间为30 min;将氧化后的剩余液回用作混凝剂,石化废水的COD去除率基本保持稳定,为40%-45%,与直接投加混凝剂时石化废水的COD去除率(43%左右)基本一致;氧化后剩余液的循环利用中形成的混凝泥的氧化效果基本稳定,COD去除率为80%左右;氧化后剩余液的回用减少了石化废水处理中混凝剂的用量,大大降低了生产成本,具有可观的经济效益。 展开更多
关键词 FENTON氧化 混凝泥 回用
下载PDF
Fatigue reliability quantitative analysis of cement concrete for highway pavement under high stress ratio 被引量:5
2
作者 薛彦卿 黄晓明 +2 位作者 钱吮智 马涛 邹湘衡 《Journal of Southeast University(English Edition)》 EI CAS 2012年第1期94-99,共6页
In order to obtain the change law of the fatigue reliability of cement concrete for highway pavement under high stress ratios, first, the probability densities of monotonic random variables including concrete fatigue ... In order to obtain the change law of the fatigue reliability of cement concrete for highway pavement under high stress ratios, first, the probability densities of monotonic random variables including concrete fatigue life are deduced. And then, the fatigue damage probability densities of the Miner and Chaboche-Zhao models are deduced. By virtue of laboratory fatigue test results, the fatigue damage probability density functions of the two models can be obtained, considering different stress ratios. Finally, substituting load cycles into them, the change law of cement concrete fatigue reliability about load cycles can be acquired. The results show that under the same stress ratio, with the increase in the load cycle, the fatigue reliability declines from almost 100% to 0% gradually. No matter under what stress ratio, during the initial stage of the load action, there is always a relatively stable phase for fatigue reliability. With the increase in the stress ratio, the stable phase gradually shortens and the load cycle corresponding to the reliability of 0% also decreases. In the descent phase of reliability, the higher the stress ratio is, the lower the concrete reliability is for the same load cycle. Besides, compared with the Chaboche-Zhao fatigue damage model, the Miner fatigue damage model is safer. 展开更多
关键词 cement concrete fatigue life fatigue damage probability density function high stress ratio fatigue reliability
下载PDF
Mechanical properties of pervious cement concrete 被引量:6
3
作者 陈瑜 王科进 梁地 《Journal of Central South University》 SCIE EI CAS 2012年第11期3329-3334,共6页
Compressive and flexural strength,fracture energy,as well as fatigue property of pervious cement concrete with either supplementary cementitious materials (SCMs) or polymer intensified,were analyzed.Test results show ... Compressive and flexural strength,fracture energy,as well as fatigue property of pervious cement concrete with either supplementary cementitious materials (SCMs) or polymer intensified,were analyzed.Test results show that the strength development of SCM-modified pervious concrete (SPC) differs from that of polymer-intensified pervious concrete (PPC),and porosity has little effect on their strength growth.PPC has higher flexural strength and remarkably higher flexural-to-compressive strength ratio than SPC at the same porosity level.Results from fracture test of pervious concrete mixes with porosity around 19.5% show that the fracture energy increases with increasing the dosage of polymer,reflecting the ductile damage features rather than brittleness.PPC displays far longer fatigue life than SPC for any given failure probability and at any stress level.It is proved that two-parameter Weibull probability function describes the flexural fatigue of pervious concrete. 展开更多
关键词 pervious concrete STRENGTH FRACTURE fatigue life
下载PDF
Flexural behaviors of steel reinforced ECC/concrete composite beams 被引量:8
4
作者 董洛廷 潘金龙 +1 位作者 袁方 梁坚凝 《Journal of Southeast University(English Edition)》 EI CAS 2012年第2期195-202,共8页
An engineered cementitious composite (ECC) is introduced to partially substitute concrete in the tension zone of a reinforced concrete beam to form an ECC/reinforced concrete (RC) composite beam, which can increas... An engineered cementitious composite (ECC) is introduced to partially substitute concrete in the tension zone of a reinforced concrete beam to form an ECC/reinforced concrete (RC) composite beam, which can increase the ductility and crack resisting ability of the beam. Based on the assumption of the plane remaining plane and the simplified constitutive models of materials, the stress and strain distributions along the depth of the composite beam in different loading stages are comprehensively investigated to obtain calculation methods of the load-carrying capacities for different stages. Also, a simplified formula for the ultimate load carrying capacity is proposed according to the Chinese code for the design of concrete structures. The relationship between the moment and curvature for the composite beam is also proposed together with a simplified calculation method for ductility of the ECC/RC composite beam. Finally, the calculation method is demonstrated with the test results of a composite beam. Comparison results show that the calculation results have good consistency with the test results, proving that the proposed calculation methods are reliable with a certain theoretical significance and reference value. 展开更多
关键词 engineered cementitious composites (ECC) reinforced concrete composite beam flexural properties load carrying capacity
下载PDF
Strength of copolymer grouting material based on orthogonal experiment 被引量:12
5
作者 陈永贵 叶为民 张可能 《Journal of Central South University》 SCIE EI CAS 2009年第1期143-148,共6页
Using the orthogonal experimental design method involving three factors and three levels, the flexural strength and the compressive strength of copolymer grouting material were studied with different compositions of w... Using the orthogonal experimental design method involving three factors and three levels, the flexural strength and the compressive strength of copolymer grouting material were studied with different compositions of water-cement ratio (mass fraction of water to cement), epoxy resin content, and waterborne epoxy curing agent content. By orthogonal range and variance analysis, the orders of three factors to influence the strength, the significance levels of different factors, and the optimized compound ratio scheme of copolymer grouting material mixture at different curing ages were determined. An empirical relationship among the strength of copolymer grouting material, the water-cement ratio, the epoxy resin content, and the waterborne epoxy curing agent content was established by multivariate regression analysis. The results indicate that water-cement ratio is the most principal and significant influencing factor on the strength. Epoxy resin content and waterbome epoxy curing agent content also have a significant influence on the strength. But epoxy resin content has a greater influence on the 7-day and 28-day flexural strength, and waterborne epoxy curing agent content has a greater influence on the 3-day flexural strength and the compressive strength. The copolymer grouting material with water-cement ratio of 0.4, epoxy resin content of 8% (mass fraction) and waterbome epoxy curing agent content of 2% (mass fraction) is the best one for repairing of cement concrete pavement. The flexural strength and the compressive strength have good correlation, and the ratio of compressive strength to flexural strength is between 1.0 and 3.3. 展开更多
关键词 STRENGTH COPOLYMER chemical grouting orthogonal method regression model
下载PDF
Consolidation behavior of cement—and lime/cement—mixed column foundations 被引量:3
6
作者 蔡袁强 徐长节 《Journal of Zhejiang University Science》 CSCD 2002年第5期507-512,共6页
The consolidation behavior of mixed in place cement and lime/cement mixed column was studied. Consolidation of the composite foundation was modeled as a three dimensional axi symmetric problem. The authors used t... The consolidation behavior of mixed in place cement and lime/cement mixed column was studied. Consolidation of the composite foundation was modeled as a three dimensional axi symmetric problem. The authors used the finite difference method to obtain the pore pressure variation with time at any location below the surface. A computer program developed by the authors was used to draw some interesting conclusions about the consolidation behaviors of cement and lime/cement mixed pile foundation. Finally, a combined model including the permeability coefficients of cement mixed piles and soil, was studied and its feasibility was evaluated. 展开更多
关键词 CONSOLIDATION Axi symmetric Cement mixed column Lime/cement mixed column Composite foundations
下载PDF
Characterizing properties of magnesium oxychloride cement concrete pavement 被引量:3
7
作者 ZHENG Wei-xin XIAO Xue-ying +5 位作者 CHANG Cheng-gong DONG Jin-mei WEN Jing HUANG Qing ZHOU Yuan LI Ying 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第12期3410-3419,共10页
The performance of magnesium oxychloride cement concrete(MOCC)in road engineering in the arid region in northwest China was investigated over a two-year period.Two categories of MOCC pavement,light-burnt magnesia conc... The performance of magnesium oxychloride cement concrete(MOCC)in road engineering in the arid region in northwest China was investigated over a two-year period.Two categories of MOCC pavement,light-burnt magnesia concrete road(Road-L)and dolomite concrete road(Road-D),were prepared with light-burnt magnesia and a mixture of light-burnt magnesia and caustic dolomite(1:3 by mass),respectively.Variations in the properties of the MOCC pavement,such as compressive and flexural strength,mineralogical phase,and microstructure,after being exposed to two rainy seasons in the field were monitored.The compressive strength of the cored samples were conducted after being aged for 28 d,and the compressive and flexural strength were tested at ages of 1,2,3,28,90,180,270,360 and 720 d.The mineralogical phase and microstructure of the pavement were also analyzed by X-ray diffraction(XRD)and scanning electron microscopy(SEM).The results demonstrate that MOCC pavement obtained desirable compressive and flexural strengths after curing for 3 d for Road-L and 28 d for Road-D.Both of the compressive and flexural strength of Road-L and Road-D decreased slightly after experiencing two rainy seasons,with the major hydration products being 5Mg(OH)2 MgCl28H2O(Phase 5)and 3Mg(OH)2 MgCl28H2O(Phase 3).The decomposition of Phase 5 is mainly responsible for reducing the mechanical strength of the MOCC pavement. 展开更多
关键词 magnesium oxychloride cement concrete(MOCC) PAVEMENT mechanical strength MICROSTRUCTURE
下载PDF
Influence of ultra-fine fly ash on hydration shrinkage of cement paste 被引量:15
8
作者 高英力 周士琼 《Journal of Central South University of Technology》 EI 2005年第5期596-600,共5页
Hydration shrinkage generated by cement hydration is the cause of autogenous shrinkage of high strength concrete. It may result in the volume change and even cracking of mortar and concrete. According to the data anal... Hydration shrinkage generated by cement hydration is the cause of autogenous shrinkage of high strength concrete. It may result in the volume change and even cracking of mortar and concrete. According to the data analysis in a series of experimental studies, the influence of ultra-fine fly ash on the hydration shrinkage of composite cementitious materials was investigated. It is found that ultra-fine fly ash can reduce the hydration shrinkage of cement paste effectively, and the more the ultra-fine fly ash, the less the hydration shrinkage. Compared with cement paste without the ultra-fine fly ash, the shrinkage ratio of cement paste reduces from 23.4% to 39.7% when the ultra-fine fly ash replaces cement from 20% to 50%. Moreover, the microscopic mechanism of the ultra-fine fly ash restraining the hydration shrinkage was also studied by scanning electron microscopy, X-ray diffraction and hydrated equations. The results show that the hydration shrinkage can be restrained to a certain degree because the ultra-fine fly ash does not participate in the hydration at the early stage and the secondary hydration products are different at the later stage. 展开更多
关键词 ultra-fine fly ash cement paste hydration shrinkage MECHANISM
下载PDF
In vitro microbiologically-induced concrete corrosion behavior of Ag^(+) loaded zeolite-polyurethane coating for concrete sewer applications 被引量:2
9
作者 Asma KAMARUL ASRI Safaa N.SAUD +1 位作者 Esah HAMZAH Zaharah IBRAHIM 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第9期3171-3185,共15页
Microbiologically-induced concrete corrosion(MICC)refers to chemical reactions between biologically produced sulphuric acid and with hydration products in the hardened concrete paste,resulting in an early reduction of... Microbiologically-induced concrete corrosion(MICC)refers to chemical reactions between biologically produced sulphuric acid and with hydration products in the hardened concrete paste,resulting in an early reduction of strength,deterioration,and very severe circumstances,structural failure.This paper explores the bactericidal characteristics of cementitious materials with surface coated with modified zeolite-polyurethane.The zeolite-polyurethane coating incorporated with silver was studied in environments inoculated with A.thiooxidans bacteria for 8 consecutive weeks.The antibacterial characteristics were evaluated in terms of pH,optical density(OD),sulphate production and bacteria count to determine the effectiveness of the zeolite-polyurethane coatings in environments inoculated with A.thiooxidans bacteria producing the sulphuric acid.The results revealed that the samples incorporated with silver modified zeolites generally showed antibacterial performance(regardless of the zeolite type)compared with unmodified polyurethane coating.This was evaluated by the lack of bacteria attachment and the deformed microcolonies on the sample surface,lag in pH reduction,increase in OD,and sulphate production.The silver zeolites gained their antibacterial performance from the release of silver ions(Ag^(+))when the sample comes into contact with aqueous solutions.This results in the inhibition of cell functions of the bacteria and subsequently causes cell damage. 展开更多
关键词 microbiologically-induced corrosion CEMENT ZEOLITE A.thiooxidans silver ions
下载PDF
Flexural response of reinforced concrete beams strengthened with post-poured ultra high toughness cementitious composites layer 被引量:6
10
作者 王楠 徐世烺 《Journal of Central South University》 SCIE EI CAS 2011年第3期932-939,共8页
Four-point bending tests were conducted up to failure on eleven reinforced concrete (RC) beams and strengthening beams to study the effectiveness of externally pouring ultra high toughness cementitious composites (UHT... Four-point bending tests were conducted up to failure on eleven reinforced concrete (RC) beams and strengthening beams to study the effectiveness of externally pouring ultra high toughness cementitious composites (UHTCC) on improving the flexural behavior of existing RC beams.The strengthening materials included UHTCC and high strength grade concrete.The parameters,such as thickness and length of strengthening layer and reinforcement in post-poured layer,were analyzed.The flexural behavior,failure mode and crack propagation of composite beams were investigated.The test results show that the strengthening layer improves the cracking and ultimate load by increasing the cross section area.Introducing UHTCC material into strengthening not only improves the bearing capacity of the original specimens,but also disperses larger cracks in upper concrete into multiple tightly-spaced fine cracks,thus prolonging the appearance of harm surface cracks and increasing the durability of existing structures.Compared with post-poured concrete,UHTCC is more suitable for working together with reinforcement.The load?deflection plots obtained from three-dimensional finite-element model (FEM) analyses are compared with those obtained from the experimental results,and show close correlation. 展开更多
关键词 ultra high toughness cementitious composities strengthening beams flexural behavior post-poured layer
下载PDF
Talc-Based Concrete for Sealing Borehole Optimized by Using Particle Packing Theory 被引量:2
11
作者 Mohammed Harem Mohammed Roland Pusch +4 位作者 Nadhir A1-Ansari Sven Knutsson Mats Emborg Martin Nilsson Alireza Pourbakhtiar 《Journal of Civil Engineering and Architecture》 2013年第4期440-455,共16页
The paper describes assessment of the performance of cement-poor concretes on the basis of packing theory. The concretes are intended for sealing segments of deep boreholes and have a small amount of cement for minimi... The paper describes assessment of the performance of cement-poor concretes on the basis of packing theory. The concretes are intended for sealing segments of deep boreholes and have a small amount of cement for minimizing the mutual chemical impact on the contacting clay seals. The composition is examined by application of packing theory with respect to the cement/aggregate ratio and the gradation of the aggregate material which is crushed quartzite for providing high internal friction after maturation, as well as to talc added for fluidity and to the small amount of cement. Low porosity and micro-structural stability must be guaranteed for very long periods of time. The study exemplifies how packing theory assist designers in selecting optimal proportions of the various components. Optimum particle packing implies minimizing the porosity and thereby reducing the amount of cement paste needed to fill the voids between the aggregate particles. The use of talc as inorganic super-plasticizer since ordinary organic additives for reaching high fluidity at casting are undesirable, and since talc reacts with cement and provides high strength in along-term perspective. 展开更多
关键词 Packing theory CONCRETE strength talc mineral micro-structural modeling.
下载PDF
Chloride diffusivity in flexural cracked Portland cement concrete and fly ash concrete beams 被引量:1
12
作者 陆春华 崔钊玮 +1 位作者 刘荣桂 刘奇东 《Journal of Central South University》 SCIE EI CAS 2014年第9期3682-3691,共10页
In order to examine the effect of load-induced transverse cracks on the chloride penetration in flexural concrete beams, two different concretes, Portland cement concrete(PCC) and fly ash concrete(FAC), were tested wi... In order to examine the effect of load-induced transverse cracks on the chloride penetration in flexural concrete beams, two different concretes, Portland cement concrete(PCC) and fly ash concrete(FAC), were tested with various crack widths. Total 14 reinforced concrete(RC) beams, ten of which were self-anchored in a three-point bending mode, were immersed into a 5% NaCl solution with the condition of dry-wet cycles. Then, the free chloride ion contents were determined by rapid chloride testing(RCT) method. Based on the proposed analytical models of chloride penetration in sound and cracked concrete subjected to dry-wet cycles, the apparent chloride diffusion coefficient and chloride diffusivity of concrete were discussed. It can be found that the performance of chloride diffusivity in both concretes will be improved with the increase of crack width, and that the influence of convection action will also be augmented. Based on the two samples obtained in sound concrete after 15 and 30 cycles, the time-exponent, m, for chloride diffusion coefficient was determined to be 0.58, 0.42, 0.62 and 0.77 for PCC1, PCC2, FAC1 and FAC2 specimens, respectively. Finally, two influencing factors of fly ash content and crack width on chloride diffusivity were obtained by regression analysis of test data, and it can be seen that factors kf and kw can be expressed with quadratic polynomial functions of fly ash content, f, and crack width, w, respectively. 展开更多
关键词 flexural cracked concrete fly ash chloride dry-wet cycle equivalent chloride diffusion coefficient
下载PDF
Utilization of Concrete Waste Aggregates Using Geopolymer Cement 被引量:1
13
作者 Sotya Astutiningsih Henki Wibowo Ashadi +2 位作者 Hendra Widhatra Kresnadya Desha Rousstia Maria Elizabeth Suryatriyastuti 《Journal of Civil Engineering and Architecture》 2010年第6期11-15,共5页
Reuse of concrete waste, especially in large quantity, can save not only material but also cost for its disposal. This paper presents experiment results on the use of fine and coarse aggregates from concrete waste in ... Reuse of concrete waste, especially in large quantity, can save not only material but also cost for its disposal. This paper presents experiment results on the use of fine and coarse aggregates from concrete waste in geopolymer mortars and concretes. Geopolymeric cement is an inorganic compounds of aluminosilicates synthesized from precursors with high content of silica and alumina activated by alkali silicate solutions. Geopolymer in this experiment was synthesized from fly ash as the precursor and sodium silicate solution as the activator. Hardening of geopolymers was performed by heating the casted paste in an oven at -60~Cfor 3 to 36 hours. Compressive strength of geopolymer pastes and mortars using either fresh or waste fine aggregates were in the range of 19-26 MPa. Hardening time of 3 hours at 60~C followed by leaving the test pieces at room temperature for 7 day before testing results in similar strength to that of mortars cured for 36 hours at 60~C followed by leaving the samples at room temperature for 3 days. It suggests that optimum strength can be achieved by combination of heating time and rest period before testing, i.e the specimens age. Applying mix design with a target strength of 40 MPa, conventional Portland cement concretes using fresh aggregates reached 70% of its target strength at day-7. Compressive strength of geopolymer concretes with waste aggregates was -25 MPa at day-3 while geopolymer concretes with fresh aggregates achieved -39 MPa at day-3. It can be concluded that geopolymer concretes can achieve the target strength in only 3 days. However, the expected reinforcing effect of coarse aggregates in concrete was ineffective if waste coarse aggregates were used as the strength of the concretes did not increase significantly from that of the mortars. On the other hand, waste fine aggregates can be reused for making geopolymer mortars having the same strength as the geopolymer mortars using fresh aggregates. 展开更多
关键词 GEOPOLYMER concrete waste aggregates MORTAR CONCRETE compressive strength.
下载PDF
Strengthening reinforced concrete beams using prestressed glass fiber-reinforced polymer-Part II:Analytical study 被引量:2
14
作者 HUNG Chien-hsing YEN Tsong WU Jong-hwei 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第8期844-852,共9页
Strengthening reinforced concrete (R. C.) beams using prestressed glass fiber-reinforced polymer (PGFRP) was studied experimentally as described in Part I of this paper (Huang et al., 2005). In that paper, R. C. beams... Strengthening reinforced concrete (R. C.) beams using prestressed glass fiber-reinforced polymer (PGFRP) was studied experimentally as described in Part I of this paper (Huang et al., 2005). In that paper, R. C. beams, R. C. beams with GFRP (glass fiber-reinforced polymer) sheets, and R. C. beams with PGFRP sheets were tested in both under-strengthened and over-strengthened cases. The test results showed that the load-carrying capacities (ultimate loads) of the beams with GFRP sheets were greater than those of the beams without polymer sheets. The load-carrying capacities of beams with PGFRP sheets were greater than those of beams with GFRP sheets. The objective of this work is to develop an analytical method to compute all of these load-carrying capacities. This analytical method is independent of the experiments and based only on the traditional R. C. and P. C. (prestressed concrete) theory. The analytical results accorded with the test results. It is suggested that this analytical method be used for analyzing and designing R. C. beams strengthened using GFRP or PGFRP sheets. 展开更多
关键词 Analytical analysis Glass fiber-reinforced polymer Prestressed glass fiber-reinforced polymer R. C. beams
下载PDF
High-Volume Fly Ash Concrete-A Relevant Step to Sustainable Development
15
作者 Malgorzata Lelusz 《Journal of Environmental Science and Engineering(A)》 2014年第5期257-267,共11页
HVFA (high-volume fly ash) concrete could be a sustainable way for by-product utilization to conserve natural resources and protect environment. HVFA concrete can play the role of a high-performance material that ma... HVFA (high-volume fly ash) concrete could be a sustainable way for by-product utilization to conserve natural resources and protect environment. HVFA concrete can play the role of a high-performance material that may be comparable to the conventional Portland cement concrete. The results of the research programme concerning the relationships between the composition of concrete (w/b ratio, fly ash content and type of cement) and their physical and mechanical properties are presented and discussed in the paper. It is found that the introduction of high-volume fly ash into concrete has caused a decrease in compressive strength at the early age of storage. The significant increase in strength was observed between 28 days and 90 days of curing. The high-volume fly ash concretes were characterized with lower water absorbability and sorptivity than control concrete. 展开更多
关键词 Fly ash concrete high-volume fly ash strength development.
下载PDF
Effective Utilization of Concrete Sludge as Soil Improvement Materials
16
作者 Seishi Tomohisa Yasuyuki Nabeshima +1 位作者 Toshiki Noguchi Yuya Miura 《Journal of Civil Engineering and Architecture》 2014年第6期783-789,共7页
The amount of muddy soil generated from various kinds of construction sites is always problematic. It is very difficult to treat muddy soil because of its low strength and high water content. But, the reuse of muddy s... The amount of muddy soil generated from various kinds of construction sites is always problematic. It is very difficult to treat muddy soil because of its low strength and high water content. But, the reuse of muddy soil is necessary to reduce the total amount of industrial wastes. Surplus concrete is also in a similar situation. Coarse and fine aggregates are removed from surplus concrete as an intermediate treatment, however, concrete sludge still remains. The authors propose a reuse method that involves the muddy soil being mixed with concrete sludge as an improvement material. The possibility of the utilization of concrete sludge was investigated through laboratory experiments. As a result, it was found that the unconfined compressive strength of the improved soil mixed with concrete sludge increased as the curing proceeded. 展开更多
关键词 REUSE concrete sludge muddy soil improvement material curing process.
下载PDF
Effective Utilization of Coal Fly Ash in Building Material Production
17
作者 Jozef Junak Nadezda Stevulova 《Journal of Chemistry and Chemical Engineering》 2011年第8期724-728,共5页
This paper is aimed at verifying utilization possibilities of alkaline modified coal fly ash as cement replacement in the concrete. The influence of alkaline activated coal fly ash originating from Slovakian power pla... This paper is aimed at verifying utilization possibilities of alkaline modified coal fly ash as cement replacement in the concrete. The influence of alkaline activated coal fly ash originating from Slovakian power plant in Novsky (Si/Al = 3,1) as a partial cement replacement in concrete on compressive strength of hardened composites after 28 and 90 days was investigated. Alkaline activation of coal fly ash was realized in an autoclave at 130 ℃ and pressure of 160 kPa during 5 hours and in a reactor under normal conditions (equal temperature during 36 hours) at solid/liquid ratio of 0.5. Coal fly ash/cement mixtures were prepared with 25 % cement replacement by starting and modified coal fly ash and given in forms. Compressive strengths of composites after 28 and 90 days of hardening were compared to referential composite without coal fly ash and evaluated according to the standard of STN EN 450 by the value of relative strength KR (compressive strength of coal fly ash/cement composite to compressive strength of comparative concrete). The final compressive strengths of hardened composites based on alkaline activated coal fly ash reached values in the range of 6 up to 50 MPa. In the set of experimental composites based on alkaline activated coal fly ashes, the highest value of relative strength after 28- and 90- days of hardening reached composite with cement replacement by coal fly ash zeolitized in autoclave (105% of compressive strength of referential sample), what is connected with formation of zeolitic phases on surface of coal fly ash particles. The achieved results confirm that alkaline activation of coal fly ash in an autoclave under observed conditions can be successfully used as a partial cement replacement in concrete of C20/25 and C25/30 in accordance with requirements of standards (STN EN 450 and STN EN 206). 展开更多
关键词 coal fly ash chemical activation CONCRETE compressive strength ZEOLITE
下载PDF
Lightweight Concrete Using Local Industrial By-product
18
作者 Deborah Olukemi Olanrewaj u 《Journal of Mechanics Engineering and Automation》 2014年第6期505-510,共6页
Construction is one of the largest users of energy, material resources and water and it is a formidable polluter. One of the major materials used in construction is concrete and ordinary concrete contains about 12% ce... Construction is one of the largest users of energy, material resources and water and it is a formidable polluter. One of the major materials used in construction is concrete and ordinary concrete contains about 12% cement which is a major producer of greenhouse gas in the world. The use of waste materials as partial replacement of cement in concrete reduces greenhouse gases, frees up land fill space, and reduces raw materials consumption. This contributes towards sustainable development, as in a sustainable society, nature is not subject to systematically increasing concentrations of substances extracted from the earth's crust. This research work explores the possibility of replacing some percentage of cement in concrete with marble sludge powder to produce lightweight concrete. This was achieved by determining the compressive strength and some hardened properties of concrete like sorptivity and carbonation with marble sludge. The results so far have been able to prove that lightweight concrete can be produced when some percentage of cement is replaced with this waste. 展开更多
关键词 Lightweight concrete marble sludge FILLER CARBONATION permeation.
下载PDF
Grinding Properties of Abandoned Concrete
19
作者 ZHENG Fang-yu WANG Li-jiu LI Qiang 《Journal of China University of Mining and Technology》 EI 2007年第2期281-285,共5页
The grinding properties of abandoned concrete, which consists primarily of hardened cement, limestone aggregate and river sand, are studied. Theoretical models of grinding are used to explain the experimental observat... The grinding properties of abandoned concrete, which consists primarily of hardened cement, limestone aggregate and river sand, are studied. Theoretical models of grinding are used to explain the experimental observation. The results show that 1) The principle disintegration mechanism of hardened cement and river sand is volumetric grinding, although at later stages grinding of cement becomes difficult because of its flaked structure; 2) The lime- stone grinding process can be divided into two steps. First, volumetric grinding, with an obvious component of surface grinding, followed by primarily surface grinding as the micro-particle content increases; 3) Initially, the principle mechanism of grinding limestone and river sand is volumetric grinding, albeit less efficient grinding than if these components were ground separately, and; 4) After 10 to 20 min of grinding the grinding bottleneck phenomenon ap- pears and after 20 min of grinding the content of micro-particles is large and surface grinding is the main mechanism while the particle size of the mixture is smaller than that of separately ground river sand and cement but bigger than that of separately ground limestone. 展开更多
关键词 abandoned concrete cement stone LIMESTONE river sand GRINDING
下载PDF
Production and Properties of Superplasticized Concrete
20
作者 Mohamed Attia Abd Elrahman M. A. Imam +1 位作者 Ahmed H. Abdel Reheem Ahmed Mohamed Tahwia 《Journal of Civil Engineering and Architecture》 2011年第4期341-352,共12页
The objective of this research is to study the effect of grinding powdered superplasticizer, Portland cement, sand, and silica fume on the properties of fresh and hardened concrete. Lose Angeles Machine was used to gr... The objective of this research is to study the effect of grinding powdered superplasticizer, Portland cement, sand, and silica fume on the properties of fresh and hardened concrete. Lose Angeles Machine was used to grind these constituents. The program was arranged to determine the effect of cycles' number, superplasticizer type and dosage, silica fume dosage and condition, and gravel to sand ratio on properties of concrete. Naphthalene sulphonated formaldehyde (NSF) superplasticizers in the forms of liquid and powdered were used. Silica fume may be grinded with the other constituents (grinded), or added to concrete mixer (normal). The water/cement (w/c) ratio varied from 0.35 to 0.55 to achieve a constant slump (50-90 mm). Slumps, bulk density and mechanical properties of concrete were measured. Scanning electron microscope (SEM) was also used to show the differences between traditional and superplasticized concrete. The results showed that grinding the mixture enhances fresh and hardened concrete properties. It is also observed that grinding the mixture for 500 cycles is more effective than other numbers of grinding. In addition, superplasticized concrete exhibits compressive strength higher than traditional one at varied ages. Moreover, using powdered superplasticizer has a remarkable effect on enhancing concrete properties rather than using it in a liquid form. A dosage of 1% by weight of cement gave the highest results of compressive strength. Silica fume has an essential role in improving concrete strength and durability since it acts as very efficient void filler and as a super pozzolana. SEM observations illustrate that grinding the mixture enhances transition zone (TZ) properties and makes it denser. On the other hand, grinded mixture can be packaged in bags and transported for use in crowded cities, and so, enhances quality control, since the only requirement to obtain superplasticized concrete is to add water and gravel. This technique has many benefits such as; saving cement, labor and noise, high quality control, and enhancing concrete permeability and durability. There are many fields of application of superplasticized concrete such as; in locations which are not easily accessible by ordinary concreting techniques, in repairing and strengthen, thin coating, and for small projects when ready mix supply is not feasible. 展开更多
关键词 SUPERPLASTICIZER silica fume Los Angeles Machine cycles' number scanning electron microscope transition zone properties of fresh and hardened concrete.
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部