Given the speed requirements of a mechanical press slider, a differential gear train is adopted instead of the belt and gear drive of a general mechanical press. Two electric motors are used to drive the differential ...Given the speed requirements of a mechanical press slider, a differential gear train is adopted instead of the belt and gear drive of a general mechanical press. Two electric motors are used to drive the differential gear train with hybrid input. Based on the working principle of a differential gear train, the angular speed equations and the power dis- tribution equations of the input-output system are established. By controlling the angular speeds of the two motors, the slider can move at different speeds. Taken a JH23-100 type mechanical press as example, the driving system is designed and the power of two motors determined. The simulated results show that the highest slider speed in the mechanical press approaches 39 mm/s only at the forging-punching stage, far less than the 232 mm/s of a general JH23-100 type mechanical press. This provides a new scheme to realize low-speed forging-punching technology from a mechanical press.展开更多
The growing demand on non-fossil fuel energy has escalated the desire for mega-scale renewable energy power generation, which can no longer be satisfied solely by relying on onshore renewable energy power plants. Outc...The growing demand on non-fossil fuel energy has escalated the desire for mega-scale renewable energy power generation, which can no longer be satisfied solely by relying on onshore renewable energy power plants. Outcomes from a recent project funded by the Sixth European Union Framework Programme (FP6), Project "Upwind" concluded that larger offshore wind turbines (i.e., 〉 10 MW) are feasible and cost effective. It will be beneficial for such future large scale renewable energy power generators (i.e., large offshore turbines) and plant (i.e., large offshore wind farms) to have a dedicated high efficiency, robust, flexible and low cost power collection, transmission and distribution technology. Proposed in this paper is a compact and effective hybrid HVDC (high voltage direct current) transformer that allows realisation of a highly robust and financially rewarding next generation multi-terminal HVDC system for future offshore renewable energy power plant. This concept, potentially, allows the elimination or minimisation of the need for a centralised local offshore HVDC platform or substation in each wind farm, solar farm, or tidal farm. This paper discusses the study outcome of the proposed hybrid HVDC transformer and the application of a multi-terminal HVDC system in the renewable energy industry, compared to the existing HVAC and VSC (voltage source converters) type HVDC systems.展开更多
This paper presents some solutions of modem renewable energy system applied actually in dissipation energy source: wind turbine, solar panel battery charge, SSS (support set system), and standby diesel generator co...This paper presents some solutions of modem renewable energy system applied actually in dissipation energy source: wind turbine, solar panel battery charge, SSS (support set system), and standby diesel generator cooperated in series, parallel and hybrid system with main energy system. Its solution enable obtain independent individual energy source in different work exploitations. One of problems concerned with alternative energy source is changes of output voltages and output power dependence of climatic conditions. Possible solution is application of decoupled adjustable speed generation system in renewable energy generation. The decoupled generation system consists of: alternative energy source, internal combustion engine drives permanent magnet generator and DC/AC, or AC/AC converter. Performance of single decoupled generation set is discussed supported by results of laboratory tests. To provide high quality voltage is applied an additional energy storage, made from super capacitor and bidirectional DC/DC convert. Such system performs very stiff voltage in any load condition. Integration of solar battery panels or renewable wind energy system is provided via DC link of the variable speed decoupled autonomous generation system. Results of computer simulation and laboratory experiments are presented in the paper.展开更多
文摘Given the speed requirements of a mechanical press slider, a differential gear train is adopted instead of the belt and gear drive of a general mechanical press. Two electric motors are used to drive the differential gear train with hybrid input. Based on the working principle of a differential gear train, the angular speed equations and the power dis- tribution equations of the input-output system are established. By controlling the angular speeds of the two motors, the slider can move at different speeds. Taken a JH23-100 type mechanical press as example, the driving system is designed and the power of two motors determined. The simulated results show that the highest slider speed in the mechanical press approaches 39 mm/s only at the forging-punching stage, far less than the 232 mm/s of a general JH23-100 type mechanical press. This provides a new scheme to realize low-speed forging-punching technology from a mechanical press.
文摘The growing demand on non-fossil fuel energy has escalated the desire for mega-scale renewable energy power generation, which can no longer be satisfied solely by relying on onshore renewable energy power plants. Outcomes from a recent project funded by the Sixth European Union Framework Programme (FP6), Project "Upwind" concluded that larger offshore wind turbines (i.e., 〉 10 MW) are feasible and cost effective. It will be beneficial for such future large scale renewable energy power generators (i.e., large offshore turbines) and plant (i.e., large offshore wind farms) to have a dedicated high efficiency, robust, flexible and low cost power collection, transmission and distribution technology. Proposed in this paper is a compact and effective hybrid HVDC (high voltage direct current) transformer that allows realisation of a highly robust and financially rewarding next generation multi-terminal HVDC system for future offshore renewable energy power plant. This concept, potentially, allows the elimination or minimisation of the need for a centralised local offshore HVDC platform or substation in each wind farm, solar farm, or tidal farm. This paper discusses the study outcome of the proposed hybrid HVDC transformer and the application of a multi-terminal HVDC system in the renewable energy industry, compared to the existing HVAC and VSC (voltage source converters) type HVDC systems.
文摘This paper presents some solutions of modem renewable energy system applied actually in dissipation energy source: wind turbine, solar panel battery charge, SSS (support set system), and standby diesel generator cooperated in series, parallel and hybrid system with main energy system. Its solution enable obtain independent individual energy source in different work exploitations. One of problems concerned with alternative energy source is changes of output voltages and output power dependence of climatic conditions. Possible solution is application of decoupled adjustable speed generation system in renewable energy generation. The decoupled generation system consists of: alternative energy source, internal combustion engine drives permanent magnet generator and DC/AC, or AC/AC converter. Performance of single decoupled generation set is discussed supported by results of laboratory tests. To provide high quality voltage is applied an additional energy storage, made from super capacitor and bidirectional DC/DC convert. Such system performs very stiff voltage in any load condition. Integration of solar battery panels or renewable wind energy system is provided via DC link of the variable speed decoupled autonomous generation system. Results of computer simulation and laboratory experiments are presented in the paper.