The present paper deals with the development of a modular, flexible and structured block to block approach for the study of regulators by implementing the different blocks on a DSP (digital signal processor). The pr...The present paper deals with the development of a modular, flexible and structured block to block approach for the study of regulators by implementing the different blocks on a DSP (digital signal processor). The proposed low-cost approach has been applied and validated by the implementation of an industrial regulator in a real time hardware-in-the-loop simulation of a mixed islanded power network including precise models of the hydraulic system. The studied network is constituted of three different types of electrical power generation systems and a consumer.展开更多
This paper presents a control strategy of a hybrid fuel cell/battery distributed generation (HDG) system in distribution systems. The overall structure of the HDG system is given, dynamic models for the solid oxide fu...This paper presents a control strategy of a hybrid fuel cell/battery distributed generation (HDG) system in distribution systems. The overall structure of the HDG system is given, dynamic models for the solid oxide fuel cell (SOFC) power plant, battery bank and its power electronic interfacing are briefly described, and controller design methodologies for the power conditioning units and fuel cell to control the power flow from the hybrid power plant to the utility grid are presented. To distribute the power between the fuel cell power plant and the battery energy storage, a neuro-fuzzy controller has been developed. Also, for controlling the active and reactive power independently in distribution systems, the current control strategy based on two fuzzy logic controllers has been presented. A Matlab/Simulink simulation model is developed for the HDG system by combining the individual component models and their controllers. Simulation results show the overall system performance including load-following and power management of the HDG system.展开更多
文摘The present paper deals with the development of a modular, flexible and structured block to block approach for the study of regulators by implementing the different blocks on a DSP (digital signal processor). The proposed low-cost approach has been applied and validated by the implementation of an industrial regulator in a real time hardware-in-the-loop simulation of a mixed islanded power network including precise models of the hydraulic system. The studied network is constituted of three different types of electrical power generation systems and a consumer.
文摘This paper presents a control strategy of a hybrid fuel cell/battery distributed generation (HDG) system in distribution systems. The overall structure of the HDG system is given, dynamic models for the solid oxide fuel cell (SOFC) power plant, battery bank and its power electronic interfacing are briefly described, and controller design methodologies for the power conditioning units and fuel cell to control the power flow from the hybrid power plant to the utility grid are presented. To distribute the power between the fuel cell power plant and the battery energy storage, a neuro-fuzzy controller has been developed. Also, for controlling the active and reactive power independently in distribution systems, the current control strategy based on two fuzzy logic controllers has been presented. A Matlab/Simulink simulation model is developed for the HDG system by combining the individual component models and their controllers. Simulation results show the overall system performance including load-following and power management of the HDG system.