This paper investigates the problem of real-time estimation for one kind of linear time invariant systems which subject to limited communication capacity. The communication limitations include signal transmission dela...This paper investigates the problem of real-time estimation for one kind of linear time invariant systems which subject to limited communication capacity. The communication limitations include signal transmission delay, the out-of-sequence measurements and data packet dropout, which appear typically in a network environment. The kernel of filter design is equally to formularize the traditional Kalman filter as one linear weighted summation which is composed of the initial state estimate and all sequential sampled measurements. For it can adapt aforementioned information limitations, the linear weighted summation is then decomposed into two stages. One is a predict-estimator composed by all reached measurements, another is one compensator constructed by those time-delayed data. In the network environment, there are obvious differences between the new hybrid filter and those existing delayed Kalman filters. For example, the novel filter can be optimal in the sense of linear minimum mean square error as soon as all measurements available and has the lowest running time than these existing delayed filters. One simulation, including two cases, is utilized to illustrate the design procedures proposed in this paper.展开更多
A sensor scheduling problem was considered for a class of hybrid systems named as the stochastic linear hybrid system (SLHS). An algorithm was proposed to select one (or a group of) sensor at each time from a set ...A sensor scheduling problem was considered for a class of hybrid systems named as the stochastic linear hybrid system (SLHS). An algorithm was proposed to select one (or a group of) sensor at each time from a set of sensors. Then, a hybrid estimation algorithm was designed to compute the estimates of the continuous and discrete states of the SLHS based on the observations from the selected sensors. As the sensor scheduling algorithm is designed such that the Bayesian decision risk is minimized, the true discrete state can be better identified. Moreover, the continuous state estimation performance of the proposed algorithm is better than that of hybrid estimation algorithms using only predetermined sensors. Finallyo the algorithms are validated through an illustrative target tracking example.展开更多
This paper presents adaptive hybrid protocols based on the declarative network and mainly discusses the principle and realization of the Bayesian-estimation based adaptive hybrid protocol in the declarative network, w...This paper presents adaptive hybrid protocols based on the declarative network and mainly discusses the principle and realization of the Bayesian-estimation based adaptive hybrid protocol in the declarative network, which is well adapted to the Mobile Ad hoc NETwork (MANET). The adaptive hybrid protocol is designed for ad hoc networks which have characteristics like self-organizing, no trusted party, flexibility, etc. The nodes that run the hybrid protocol can automatically select one routing protocol that is suitable for different network environment. The Bayesian-estimation based adaptive strategy, that improves the adaptability and stability of the protocol, succeeds in the Rapidnet, a declarative network engine. The result in the Rapidnet proves that the hybrid protocol and the adaptive strategy are feasible. The experiment on the ns-3 simulator, an emerging discrete-event network simulator, validates that this protocol performs well and reduces communication overheads.展开更多
基金Supported by the National Natural Science Foundation of China (No.60804064,60772006)
文摘This paper investigates the problem of real-time estimation for one kind of linear time invariant systems which subject to limited communication capacity. The communication limitations include signal transmission delay, the out-of-sequence measurements and data packet dropout, which appear typically in a network environment. The kernel of filter design is equally to formularize the traditional Kalman filter as one linear weighted summation which is composed of the initial state estimate and all sequential sampled measurements. For it can adapt aforementioned information limitations, the linear weighted summation is then decomposed into two stages. One is a predict-estimator composed by all reached measurements, another is one compensator constructed by those time-delayed data. In the network environment, there are obvious differences between the new hybrid filter and those existing delayed Kalman filters. For example, the novel filter can be optimal in the sense of linear minimum mean square error as soon as all measurements available and has the lowest running time than these existing delayed filters. One simulation, including two cases, is utilized to illustrate the design procedures proposed in this paper.
基金Foundation item: Project(2012AA051603) supported by the National High Technology Research and Development Program 863 Plan of China
文摘A sensor scheduling problem was considered for a class of hybrid systems named as the stochastic linear hybrid system (SLHS). An algorithm was proposed to select one (or a group of) sensor at each time from a set of sensors. Then, a hybrid estimation algorithm was designed to compute the estimates of the continuous and discrete states of the SLHS based on the observations from the selected sensors. As the sensor scheduling algorithm is designed such that the Bayesian decision risk is minimized, the true discrete state can be better identified. Moreover, the continuous state estimation performance of the proposed algorithm is better than that of hybrid estimation algorithms using only predetermined sensors. Finallyo the algorithms are validated through an illustrative target tracking example.
基金Supported by National Key Technology R&D Program of the Ministry of Science and Technology (2012BAB15B01)
文摘This paper presents adaptive hybrid protocols based on the declarative network and mainly discusses the principle and realization of the Bayesian-estimation based adaptive hybrid protocol in the declarative network, which is well adapted to the Mobile Ad hoc NETwork (MANET). The adaptive hybrid protocol is designed for ad hoc networks which have characteristics like self-organizing, no trusted party, flexibility, etc. The nodes that run the hybrid protocol can automatically select one routing protocol that is suitable for different network environment. The Bayesian-estimation based adaptive strategy, that improves the adaptability and stability of the protocol, succeeds in the Rapidnet, a declarative network engine. The result in the Rapidnet proves that the hybrid protocol and the adaptive strategy are feasible. The experiment on the ns-3 simulator, an emerging discrete-event network simulator, validates that this protocol performs well and reduces communication overheads.