期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
基于单台加速度记录的混合全局优化HVSR反演场地浅层速度结构 被引量:9
1
作者 荣棉水 符力耘 李小军 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2018年第3期938-947,共10页
利用水平与竖向谱比(HVSR)方法反演场地速度结构是国际上迅速发展的研究领域.HVSR反演计算实质是一个土层场地模型空间搜索的全局优化问题,当模型搜索空间的复杂程度增大时,目前常用的搜索算法收敛速度慢,计算效率较低.本文实现了一种... 利用水平与竖向谱比(HVSR)方法反演场地速度结构是国际上迅速发展的研究领域.HVSR反演计算实质是一个土层场地模型空间搜索的全局优化问题,当模型搜索空间的复杂程度增大时,目前常用的搜索算法收敛速度慢,计算效率较低.本文实现了一种结合遗传和模拟退火方法优点的混合全局优化HVSR反演算法,通过理论模型和竖向台阵实测数据的检验,表明该算法能获得很好的反演效果,较好地解决了蒙特卡罗方法收敛速度慢,遗传算法收敛早熟和模拟退火算法搜索效率低的问题.本文在此基础上讨论了单台加速度S波记录用于场地速度结构HVSR反演的适用性,为基于单个地震台的地震观测记录反演浅层速度结构提供了一种高效且较为准确的反演方法. 展开更多
关键词 水平与竖向谱比(HVSR) 遗传算法 模拟退火算法 混合全局优化算法 浅层速度结构反演
下载PDF
高维复杂函数的混合模拟退火全局优化策略 被引量:6
2
作者 王忠贵 罗亚中 《计算机工程与应用》 CSCD 北大核心 2004年第23期36-39,共4页
对于高维复杂函数优化问题,经典的优化算法存在着初始点敏感、局部收敛等问题;而模拟退火算法等智能算法则有着计算成本高昂、算法早熟等缺陷。NFL定理犤1犦预示了混合优化策略是解决实际优化问题的最好途径。该文融合了模拟退火算法和... 对于高维复杂函数优化问题,经典的优化算法存在着初始点敏感、局部收敛等问题;而模拟退火算法等智能算法则有着计算成本高昂、算法早熟等缺陷。NFL定理犤1犦预示了混合优化策略是解决实际优化问题的最好途径。该文融合了模拟退火算法和经典算法的优点,设计了高维复杂函数混合模拟退火优化策略。混合优化策略具有模拟退火算法的全局收敛性,同时引入强局部收敛经典算法作为模拟退火算法的精英个体提高算子,提高了模拟退火算法局部开采能力,加快了收敛速度。数值仿真计算结果表明,混合模拟退火策略求解高维复杂函数的性能大大优于单一算法,具有强鲁棒性、高收敛速度和高精度等优点。该文的算法设计思想对于解决实际问题有较好的借鉴意义。 展开更多
关键词 高维复杂函数 混合全局优化 模拟退火算法 NFL定理 精英策略
下载PDF
一种基于全局劣汰策略的混合粒子群优化算法 被引量:4
3
作者 贺毅朝 寇应展 陈致明 《计算机应用研究》 CSCD 北大核心 2007年第8期75-78,共4页
提出一种改进的粒子群优化算法——基于全局劣汰策略的混合粒子群优化算法(GTPSO)。GTPSO在保持PSO算法快速收敛的基础上,以郭涛算法(GuoA)的寻优机制确保种群的多样性和算法的坚韧性。数值计算结果表明,对于高维(维数≥10)复杂非凸多... 提出一种改进的粒子群优化算法——基于全局劣汰策略的混合粒子群优化算法(GTPSO)。GTPSO在保持PSO算法快速收敛的基础上,以郭涛算法(GuoA)的寻优机制确保种群的多样性和算法的坚韧性。数值计算结果表明,对于高维(维数≥10)复杂非凸多峰函数的数值优化问题,GTPSO算法的计算结果均优于GuoA算法和粒子群优化算法。 展开更多
关键词 粒子群优化算法 郭涛算法 全局劣汰策略 基于全局劣汰策略的混合粒子群优化算法
下载PDF
MINLP问题全局优化算法的研究 被引量:7
4
作者 丰建荣 刘正和 +1 位作者 刘志河 王成寿 《系统仿真学报》 EI CAS CSCD 北大核心 2005年第8期1859-1863,共5页
提出了一种求解混合整数非线性规划MINLP问题的混合优化算法GASimplex,由遗传算法模块GASolver和单纯形算法模块SimplexSolver两部分组成。该算法首先确定MINLP模型的整数变量和复杂变量,使得固定这些变量后可以将原问题转化为一线性规... 提出了一种求解混合整数非线性规划MINLP问题的混合优化算法GASimplex,由遗传算法模块GASolver和单纯形算法模块SimplexSolver两部分组成。该算法首先确定MINLP模型的整数变量和复杂变量,使得固定这些变量后可以将原问题转化为一线性规划子问题,在此基础上应用GASolver实现对整数变量和复杂变量的优化,而其适应函数则可以通过求解编码对应的线性规划子问题SimplexSolver来得到。这样,一方面由于在遗传算法中引入了局部搜索过程,极大增加了GASimplex整体收敛速度,而且对于非凸的MINLP问题,可以在理论上保证得到解的全局最优性;另一方面,模型约束条件是通过SimplexSolver求解得到,故约束条件的存在一般不会增加遗传算法处理的复杂度,可有效的处理约束的MINLP问题。通过对一MINLP模型仿真分析,证明该算法不仅具有很快的收敛速度,而且能得到全局的次最优解,更适合处理一类复杂的MINLP问题。 展开更多
关键词 混合整数非线性规划 混合全局优化算法 遗传算法 单纯形方法 整数变 复杂变量
下载PDF
混合HOGA-SVM财务风险预警模型实证研究 被引量:19
5
作者 丁德臣 《管理工程学报》 CSSCI 北大核心 2011年第2期37-44,36,共9页
目前涉及遗传算法与支持向量机相结合的预测模型中,遗传算法基本上采用的是标准算法。但是在对全局函数的优化中,一般的遗传算法容易陷入局部最优,从而降低遗传算法收敛速度和搜索精度,进而影响财务风险预警模型的精度与速度。基于此,... 目前涉及遗传算法与支持向量机相结合的预测模型中,遗传算法基本上采用的是标准算法。但是在对全局函数的优化中,一般的遗传算法容易陷入局部最优,从而降低遗传算法收敛速度和搜索精度,进而影响财务风险预警模型的精度与速度。基于此,提出了基于混合全局优化正交遗传算法(HOGA)和支持向量机(SVM)的财务风险预警模型(HOGA-SVM),通过使用混合全局优化正交遗传算法连同支持向量机来改进支持向量机进行财务风险预警的效果。结果显示,提出的模型不仅提高了财务风险预警的准确率和速度,而且模型的两类分类错误率(尤其是第一类分类错误率)相对其他模型也有了明显下降。未来的工作可以把模型的应用扩大到多分类的财务风险预警问题中。 展开更多
关键词 财务风险预警 混合全局优化正交遗传算法 支持向量机
下载PDF
一种吞吐量优化的无人机飞行轨迹规划算法 被引量:1
6
作者 李春若 邹子贤 《火力与指挥控制》 CSCD 北大核心 2021年第8期167-170,176,共5页
基于无人机(Unmanned Aerial Vehicle,UAV)协作通信已成为满足下一代蜂窝用户需求的有效技术。UAV的飞行轨迹对通信服务质量有直接影响。为此,提出吞吐量优化的UAV飞行轨迹规划(UAV Trajectory Planning to Maximize Throughput,TPMT)... 基于无人机(Unmanned Aerial Vehicle,UAV)协作通信已成为满足下一代蜂窝用户需求的有效技术。UAV的飞行轨迹对通信服务质量有直接影响。为此,提出吞吐量优化的UAV飞行轨迹规划(UAV Trajectory Planning to Maximize Throughput,TPMT)算法。TPMT算法以最大化用户与UAV通信链路的吞吐量为目标函数,并通过求解目标函数规划UAV的飞行轨迹。先构建用户与UAV的信道模型,再建立最大化吞吐量的目标函数,然后,引用混合优化算法GASimplex求解目标函数。仿真结果表明,提出的TPMT算法能够快速收敛,并提高了吞吐量。 展开更多
关键词 无人机 轨迹规划 吞吐量 混合整数非线性规划 混合全局优化算法
下载PDF
Swarm intelligence for mixed-variable design optimization 被引量:7
7
作者 郭创新 胡家声 +1 位作者 叶彬 曹一家 《Journal of Zhejiang University Science》 EI CSCD 2004年第7期851-860,共10页
Many engineering optimization problems frequently encounter continuous variables and discrete variables which adds considerably to the solution complexity. Very few of the existing methods can yield a globally optimal... Many engineering optimization problems frequently encounter continuous variables and discrete variables which adds considerably to the solution complexity. Very few of the existing methods can yield a globally optimal solution when the objective functions are non-convex and non-differentiable. This paper presents a hybrid swarm intelligence ap-proach (HSIA) for solving these nonlinear optimization problems which contain integer, discrete, zero-one and continuous variables. HSIA provides an improvement in global search reliability in a mixed-variable space and converges steadily to a good solution. An approach to handle various kinds of variables and constraints is discussed. Comparison testing of several examples of mixed-variable optimization problems in the literature showed that the proposed approach is superior to current methods for finding the best solution, in terms of both solution quality and algorithm robustness. 展开更多
关键词 Swarm intelligence Mixed variables Global optimization Engineering design optimization
下载PDF
A Hybrid Improved Genetic Algorithm and Its Application in Dynamic Optimization Problems of Chemical Processes 被引量:5
8
作者 SUN Fan DU Wenli QI Rongbin QIAN Feng ZHONG Weimin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第2期144-154,共11页
The solutions of dynamic optimization problems are usually very difficult due to their highly nonlinear and multidimensional nature. 13enetic algorithm (GA) has been proved to be a teasibte method when the gradient ... The solutions of dynamic optimization problems are usually very difficult due to their highly nonlinear and multidimensional nature. 13enetic algorithm (GA) has been proved to be a teasibte method when the gradient is difficult to calculate. Its advantage is that the control profiles at all time stages are optimized simultaneously, but its convergence is very slow in the later period of evolution and it is easily trapped in the local optimum. In this study, a hybrid improved genetic algorithm (HIGA) for solving dynamic optimization problems is proposed to overcome these defects. Simplex method (SM) is used to perform the local search in the neighborhood of the optimal solution. By using SM, the ideal searching direction of global optimal solution could be found as soon as possible and the convergence speed of the algorithm is improved. The hybrid algorithm presents some improvements, such as protecting the best individual, accepting immigrations, as well as employing adaptive crossover and Ganssian mutation operators. The efficiency of the proposed algorithm is demonstrated by solving several dynamic optimization problems. At last, HIGA is applied to the optimal production of secreted protein in a fed batch reactor and the optimal feed-rate found by HIGA is effective and relatively stable. 展开更多
关键词 genetic algorithm simplex method dynamic optimization chemical process
下载PDF
A new hybrid algorithm for global optimization and slope stability evaluation 被引量:3
9
作者 Taha Mohd Raihan Khajehzadeh Mohammad Eslami Mahdiyeh 《Journal of Central South University》 SCIE EI CAS 2013年第11期3265-3273,共9页
A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems a... A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems and minimization of factor of safety in slope stability analysis. The new algorithm combines the global exploration ability of the GSA to converge rapidly to a near optimum solution. In addition, it uses the accurate local exploitation ability of the SQP to accelerate the search process and find an accurate solution. A set of five well-known benchmark optimization problems was used to validate the performance of the GSA-SQP as a global optimization algorithm and facilitate comparison with the classical GSA. In addition, the effectiveness of the proposed method for slope stability analysis was investigated using three ease studies of slope stability problems from the literature. The factor of safety of earth slopes was evaluated using the Morgenstern-Price method. The numerical experiments demonstrate that the hybrid algorithm converges faster to a significantly more accurate final solution for a variety of benchmark test functions and slope stability problems. 展开更多
关键词 gravitational search algorithm sequential quadratic programming hybrid algorithm global optimization slope stability
下载PDF
An enhanced hybrid and adaptive meta-model based global optimization algorithm for engineering optimization problems 被引量:4
10
作者 ZHOU Guan DUAN LiBin +3 位作者 ZHAO WanZhong WANG ChunYan MA ZhengDong GU JiChao 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第8期1147-1155,共9页
Due to the good balance between high efficiency and accuracy, meta-model based optimization algorithm is an important global optimization category and has been widely applied. To better solve the highly nonlinear and ... Due to the good balance between high efficiency and accuracy, meta-model based optimization algorithm is an important global optimization category and has been widely applied. To better solve the highly nonlinear and computation intensive en- gineering optimization problems, an enhanced hybrid and adaptive meta-model based global optimization (E-HAM) is first proposed in this work. Important region update method (IRU) and different sampling size strategies are proposed in the opti- mization method to enhance the performance. By applying self-moving and scaling strategy, the important region will be up- dated adaptively according to the search results to improve the resulting precision and convergence rate. Rough sampling strategy and intensive sampling strategy are applied at different stages of the optimization to improve the search efficiently and avoid results prematurely gathering in a small design space. The effectiveness of the new optimization algorithm is verified by comparing to six optimization methods with different variables bench mark optimization problems. The E-HAM optimization method is then applied to optimize the design parameters of the practical negative Poisson's ratio (NPR) crash box in this work. The results indicate that the proposed E-HAM has high accuracy and efficiency in optimizing the computation intensive prob- lems and can be widely used in engineering industry. 展开更多
关键词 global optimization META-MODELING important region update method crash box
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部