Many engineering optimization problems frequently encounter continuous variables and discrete variables which adds considerably to the solution complexity. Very few of the existing methods can yield a globally optimal...Many engineering optimization problems frequently encounter continuous variables and discrete variables which adds considerably to the solution complexity. Very few of the existing methods can yield a globally optimal solution when the objective functions are non-convex and non-differentiable. This paper presents a hybrid swarm intelligence ap-proach (HSIA) for solving these nonlinear optimization problems which contain integer, discrete, zero-one and continuous variables. HSIA provides an improvement in global search reliability in a mixed-variable space and converges steadily to a good solution. An approach to handle various kinds of variables and constraints is discussed. Comparison testing of several examples of mixed-variable optimization problems in the literature showed that the proposed approach is superior to current methods for finding the best solution, in terms of both solution quality and algorithm robustness.展开更多
The solutions of dynamic optimization problems are usually very difficult due to their highly nonlinear and multidimensional nature. 13enetic algorithm (GA) has been proved to be a teasibte method when the gradient ...The solutions of dynamic optimization problems are usually very difficult due to their highly nonlinear and multidimensional nature. 13enetic algorithm (GA) has been proved to be a teasibte method when the gradient is difficult to calculate. Its advantage is that the control profiles at all time stages are optimized simultaneously, but its convergence is very slow in the later period of evolution and it is easily trapped in the local optimum. In this study, a hybrid improved genetic algorithm (HIGA) for solving dynamic optimization problems is proposed to overcome these defects. Simplex method (SM) is used to perform the local search in the neighborhood of the optimal solution. By using SM, the ideal searching direction of global optimal solution could be found as soon as possible and the convergence speed of the algorithm is improved. The hybrid algorithm presents some improvements, such as protecting the best individual, accepting immigrations, as well as employing adaptive crossover and Ganssian mutation operators. The efficiency of the proposed algorithm is demonstrated by solving several dynamic optimization problems. At last, HIGA is applied to the optimal production of secreted protein in a fed batch reactor and the optimal feed-rate found by HIGA is effective and relatively stable.展开更多
A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems a...A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems and minimization of factor of safety in slope stability analysis. The new algorithm combines the global exploration ability of the GSA to converge rapidly to a near optimum solution. In addition, it uses the accurate local exploitation ability of the SQP to accelerate the search process and find an accurate solution. A set of five well-known benchmark optimization problems was used to validate the performance of the GSA-SQP as a global optimization algorithm and facilitate comparison with the classical GSA. In addition, the effectiveness of the proposed method for slope stability analysis was investigated using three ease studies of slope stability problems from the literature. The factor of safety of earth slopes was evaluated using the Morgenstern-Price method. The numerical experiments demonstrate that the hybrid algorithm converges faster to a significantly more accurate final solution for a variety of benchmark test functions and slope stability problems.展开更多
Due to the good balance between high efficiency and accuracy, meta-model based optimization algorithm is an important global optimization category and has been widely applied. To better solve the highly nonlinear and ...Due to the good balance between high efficiency and accuracy, meta-model based optimization algorithm is an important global optimization category and has been widely applied. To better solve the highly nonlinear and computation intensive en- gineering optimization problems, an enhanced hybrid and adaptive meta-model based global optimization (E-HAM) is first proposed in this work. Important region update method (IRU) and different sampling size strategies are proposed in the opti- mization method to enhance the performance. By applying self-moving and scaling strategy, the important region will be up- dated adaptively according to the search results to improve the resulting precision and convergence rate. Rough sampling strategy and intensive sampling strategy are applied at different stages of the optimization to improve the search efficiently and avoid results prematurely gathering in a small design space. The effectiveness of the new optimization algorithm is verified by comparing to six optimization methods with different variables bench mark optimization problems. The E-HAM optimization method is then applied to optimize the design parameters of the practical negative Poisson's ratio (NPR) crash box in this work. The results indicate that the proposed E-HAM has high accuracy and efficiency in optimizing the computation intensive prob- lems and can be widely used in engineering industry.展开更多
基金Project supported by the National Natural Science Foundation ofChina (Nos. 60074040 6022506) and the Teaching and ResearchAward Program for Outstanding Young Teachers in Higher Edu-cation Institutions of China
文摘Many engineering optimization problems frequently encounter continuous variables and discrete variables which adds considerably to the solution complexity. Very few of the existing methods can yield a globally optimal solution when the objective functions are non-convex and non-differentiable. This paper presents a hybrid swarm intelligence ap-proach (HSIA) for solving these nonlinear optimization problems which contain integer, discrete, zero-one and continuous variables. HSIA provides an improvement in global search reliability in a mixed-variable space and converges steadily to a good solution. An approach to handle various kinds of variables and constraints is discussed. Comparison testing of several examples of mixed-variable optimization problems in the literature showed that the proposed approach is superior to current methods for finding the best solution, in terms of both solution quality and algorithm robustness.
基金Supported by Major State Basic Research Development Program of China (2012CB720500), National Natural Science Foundation of China (Key Program: Ul162202), National Science Fund for Outstanding Young Scholars (61222303), National Natural Science Foundation of China (21276078, 21206037) and the Fundamental Research Funds for the Central Universities.
文摘The solutions of dynamic optimization problems are usually very difficult due to their highly nonlinear and multidimensional nature. 13enetic algorithm (GA) has been proved to be a teasibte method when the gradient is difficult to calculate. Its advantage is that the control profiles at all time stages are optimized simultaneously, but its convergence is very slow in the later period of evolution and it is easily trapped in the local optimum. In this study, a hybrid improved genetic algorithm (HIGA) for solving dynamic optimization problems is proposed to overcome these defects. Simplex method (SM) is used to perform the local search in the neighborhood of the optimal solution. By using SM, the ideal searching direction of global optimal solution could be found as soon as possible and the convergence speed of the algorithm is improved. The hybrid algorithm presents some improvements, such as protecting the best individual, accepting immigrations, as well as employing adaptive crossover and Ganssian mutation operators. The efficiency of the proposed algorithm is demonstrated by solving several dynamic optimization problems. At last, HIGA is applied to the optimal production of secreted protein in a fed batch reactor and the optimal feed-rate found by HIGA is effective and relatively stable.
文摘A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems and minimization of factor of safety in slope stability analysis. The new algorithm combines the global exploration ability of the GSA to converge rapidly to a near optimum solution. In addition, it uses the accurate local exploitation ability of the SQP to accelerate the search process and find an accurate solution. A set of five well-known benchmark optimization problems was used to validate the performance of the GSA-SQP as a global optimization algorithm and facilitate comparison with the classical GSA. In addition, the effectiveness of the proposed method for slope stability analysis was investigated using three ease studies of slope stability problems from the literature. The factor of safety of earth slopes was evaluated using the Morgenstern-Price method. The numerical experiments demonstrate that the hybrid algorithm converges faster to a significantly more accurate final solution for a variety of benchmark test functions and slope stability problems.
基金supported by the Research Project of State Key Laboratory of Mechanical System and Vibration(Grant Nos.MSV201507&MSV201606)the National Natural Science Foundation of China(Grant No.51375007)+3 种基金the Natural Science Foundation of Jiangsu Province(Grant No.SBK2015022352)the Fundamental Research Funds for the Central Universities(Grant No.NE2016002)the Open Fund Program of the State Key Laboratory of Vehicle Lightweight Design,P.R.China(Grant No.20130303)the Visiting Scholar Foundation of the State Key Lab of Mechanical Transmission in Chongqing University(Grant Nos.SKLMT-KFKT-2014010&SKLMT-KFKT-201507)
文摘Due to the good balance between high efficiency and accuracy, meta-model based optimization algorithm is an important global optimization category and has been widely applied. To better solve the highly nonlinear and computation intensive en- gineering optimization problems, an enhanced hybrid and adaptive meta-model based global optimization (E-HAM) is first proposed in this work. Important region update method (IRU) and different sampling size strategies are proposed in the opti- mization method to enhance the performance. By applying self-moving and scaling strategy, the important region will be up- dated adaptively according to the search results to improve the resulting precision and convergence rate. Rough sampling strategy and intensive sampling strategy are applied at different stages of the optimization to improve the search efficiently and avoid results prematurely gathering in a small design space. The effectiveness of the new optimization algorithm is verified by comparing to six optimization methods with different variables bench mark optimization problems. The E-HAM optimization method is then applied to optimize the design parameters of the practical negative Poisson's ratio (NPR) crash box in this work. The results indicate that the proposed E-HAM has high accuracy and efficiency in optimizing the computation intensive prob- lems and can be widely used in engineering industry.