Reuse of concrete waste, especially in large quantity, can save not only material but also cost for its disposal. This paper presents experiment results on the use of fine and coarse aggregates from concrete waste in ...Reuse of concrete waste, especially in large quantity, can save not only material but also cost for its disposal. This paper presents experiment results on the use of fine and coarse aggregates from concrete waste in geopolymer mortars and concretes. Geopolymeric cement is an inorganic compounds of aluminosilicates synthesized from precursors with high content of silica and alumina activated by alkali silicate solutions. Geopolymer in this experiment was synthesized from fly ash as the precursor and sodium silicate solution as the activator. Hardening of geopolymers was performed by heating the casted paste in an oven at -60~Cfor 3 to 36 hours. Compressive strength of geopolymer pastes and mortars using either fresh or waste fine aggregates were in the range of 19-26 MPa. Hardening time of 3 hours at 60~C followed by leaving the test pieces at room temperature for 7 day before testing results in similar strength to that of mortars cured for 36 hours at 60~C followed by leaving the samples at room temperature for 3 days. It suggests that optimum strength can be achieved by combination of heating time and rest period before testing, i.e the specimens age. Applying mix design with a target strength of 40 MPa, conventional Portland cement concretes using fresh aggregates reached 70% of its target strength at day-7. Compressive strength of geopolymer concretes with waste aggregates was -25 MPa at day-3 while geopolymer concretes with fresh aggregates achieved -39 MPa at day-3. It can be concluded that geopolymer concretes can achieve the target strength in only 3 days. However, the expected reinforcing effect of coarse aggregates in concrete was ineffective if waste coarse aggregates were used as the strength of the concretes did not increase significantly from that of the mortars. On the other hand, waste fine aggregates can be reused for making geopolymer mortars having the same strength as the geopolymer mortars using fresh aggregates.展开更多
This research investigated the water permeability coefficient of fly ash-based geopolymer concrete. The effect of sodium hydroxide (Na(OH)) concentrations and Si/AI ratios on water permeability and compressive str...This research investigated the water permeability coefficient of fly ash-based geopolymer concrete. The effect of sodium hydroxide (Na(OH)) concentrations and Si/AI ratios on water permeability and compressive strength of geopolymer concretes were studied. The geopolymer concrete were prepared from Mae Moh fly ash with sodium silicate (Na2SiO3) and sodium hydroxide (Na(OH)) solutions. In the first group, concentration of Na(OH) was varied at 8, 10, 12, and 14 molar and the Si/AI ratio was kept constant at 1.98. In the second group, a concentration of Na(OH) was kept constant at 14 molar and the Si/AI ratio was varied at 2.2, 2.4, 2.6, and 2.8. The hardened concretes were air-cured in laboratory. The compressive strength and water permeability were tested at the age of 28 and 60 days. The results showed that compressive strengths of geopolymer concrete significantly increased with the increase of a concentration of Na(OH) and Si/AI ratio. The water permeability coefficients increase with the decrease of compressive strength. In addition, the high reduction of water permeability coefficients with time was found in geopolymer concrete with lower Na(OH) concentration than that higher Na(OH) concentration.展开更多
Geopolymer-lightweight aggregate refractory concrete (GLARC) was prepared with geopolymer and lightweight aggregate. The mechanical property and heat-resistance (950 ℃) of GLARC were investigated. The effects of size...Geopolymer-lightweight aggregate refractory concrete (GLARC) was prepared with geopolymer and lightweight aggregate. The mechanical property and heat-resistance (950 ℃) of GLARC were investigated. The effects of size of aggregate and mass ratio of geopolymer to aggregate on mechanical and thermal properties were also studied. The results show that the highest compressive strength of the heated refractory concrete is 43.3 MPa,and the strength loss is only 42%. The mechanical property and heat-resistance are influenced by the thickness of geopolymer covered with aggregate,which can be expressed as the quantity of geopolymer on per surface area of aggregate. In order to show the relationship between the thickness of geopolymer covered with aggregate and the thermal property of concrete,equal thickness model is presented,which provides a reference for the mix design of GLARC. For the haydite sand with size of 1.18-4.75 mm,the best amount of geopolymer per surface area of aggregate should be in the range of 0.300-0.500 mg/mm2.展开更多
Based on the Canadian Standards Association (CSA) criteria,105 pullout specimens were tested to investigate the effect of different rib geometries on bond strength of glass fiber reinforced polymer (GFRP) rebars embed...Based on the Canadian Standards Association (CSA) criteria,105 pullout specimens were tested to investigate the effect of different rib geometries on bond strength of glass fiber reinforced polymer (GFRP) rebars embedded in concrete. Two kinds of conventional reinforcing rebars were also studied for comparison. Each rebar was embedded in a 150 mm concrete cube,with the embedded length being four times the rebar diameter. The experimental parameters were the rebar type,rebar component,rebar diameter,rebar surface texture,rib height,rib spacing and rib width. Theoretical analysis was also carried out to explain the experimental phenomena and results. The experimental and theoretical results indicated that the bond strength of GFRP rebars was about 13%~35% lower than that of steel rebars. The bond strength and bond-slip behavior of the specially machined rebars varied with the rebar type,rebar diameter,rebar surface texture,rib height,rib spacing and rib width. Using the results,design recom-mendations were made concerning optimum rib geometries of GFRP ribbed rebars with superior bond-slip characteristics,which concluded that the optimal rib spacing of ribbed rebars is the same as the rebar diameter,and that the optimal rib height is 6% of the rebar diameter.展开更多
Coagulation mechanisms of polyaluminum chloride(PACl) at various dosages were studied using a conventional jar test at different final and initial pH values during treating kaolin suspension. The optimal final pH and ...Coagulation mechanisms of polyaluminum chloride(PACl) at various dosages were studied using a conventional jar test at different final and initial pH values during treating kaolin suspension. The optimal final pH and dosages for PACl were obtained based on residual turbidity and zeta potential of flocs. The coagulation zones at various PACl dosages and solution p H values were developed and compared with those of alum. It is found that the optimal mechanism under acidic condition is charge neutralization, while alkaline condition will facilitate the coagulation of PACl. Both charge neutralization coagulation and sweep coagulation can achieve high coagulation efficiency under the alkaline condition ranging from final p H 7.0 to 10.0. Stabilization, charge neutralization destabilization, restabilization and sweep zones occur successively with increasing PACl dosages with the final p H values fixed at 7.0 and 8.0, but restabilization zone disappears at final p H 10.0. When the final p H is not controlled and consequently decreases with increasing PACl dosage, no typical sweep zone can be observed and the coagulant efficiency decreases at high PACl dosage. It seems that the final pH is more meaningful than the initial p H for coagulation. Charge neutralization coagulation efficiency is dominated by zeta potential of flocs and PACl precipitates. The charge neutralization and sweep coagulation zones of PACl are broader in the ranges of coagulant dosage and p H than those of alum. The results are helpful for us to treat water and wastewater using PACl and to understand the coagulation process of PACl.展开更多
The effects of the coagulation-flocculation process using polyaluminium chloride (PAC) and its aids on the removal of organics and nutrient in the combined sewage from Shanghai Zhuyuan First Municipal Wastewater Treat...The effects of the coagulation-flocculation process using polyaluminium chloride (PAC) and its aids on the removal of organics and nutrient in the combined sewage from Shanghai Zhuyuan First Municipal Wastewater Treatment Plant are studied. The coagulant aids include cationic polyacrylamide (PAM), polyvinyl alcohol (PVA), activated silica (AS) and a kind of polyelectrolyte called AN prepared by the authors. The coagulating solution was added to the glass jar holding 1 L wastewater and stirred to a uniform mixture which was stilled to let the supernatant turn out. The supernatant was analyzed to see the removal efficiencies of suspended solid (SS), chemical oxygen demand (COD), soluble chemical oxygen demand (S-COD), total phosphorus (TP) and orthophosphate (PO4 -P). It is found that PAC is efficient in reducing those five matters, PAM, PVA and 3? AN each faciliates the reduction of TP, SS, COD and S-COD and has little contribution to the removal of ammonia nitrigen and orthophosphate, and AS is noneffective at all. The coagulation-flocculation process with PAC has demonstrated applicable to the treatment of combined sewage in Shanghai, and it involves mainly the sweep coagulation mechanism and maybe some more complicated mechanism as well.展开更多
Conventional jar tests and on-line size monitoring were used to investigate the effects of slow-mixing intensity and duration on residual turbidity and floc size during charge neutralization coagulation and sweep floc...Conventional jar tests and on-line size monitoring were used to investigate the effects of slow-mixing intensity and duration on residual turbidity and floc size during charge neutralization coagulation and sweep floc- culation with polyaluminum chloride. The compensatory effect of slow-mixing on coagulation performance fol- low!ng inadequate_or excessive rapid-mi_xing was also examined. It is found that slowTmixing intensity has a more marked positive ettect on charge neutralization coas;ulatlon tlaan on sweep tlocculatlon. llle optimal root-mean- square velocity gradient, G, for slow-mixing is 15 s-' for both coagulation mechanisms, and charge neutralization coagulation requires a longer slow-mixing duration. The optimal slow-mixing duration, based on residual turbidity,is longer than the time to tbrm the largest mean Ilocs. The optimal product of G and mixing duration, GT, lbr slow-mixing during charge neutralization coagulation (13500) are higher than that during sweep flocculation (4500) and both are less than the range of values recommended by the American Water Works Association (24000-84000).The optimal GT value under various slow-mixing conditions increases with G. Appropriate extension'of slow-mixing duration during charge neutralization coagulation can improve coagulation performance after an inadequate or excessive rapid-mixing duration, but during sweep flocculation, appropriate shortening of slow-mixing duration after an excessive rapid-mixing or appropriate extension of slow-mixing duration after an inadequate rapid-mixing is favorable.展开更多
Compressive and flexural strength,fracture energy,as well as fatigue property of pervious cement concrete with either supplementary cementitious materials (SCMs) or polymer intensified,were analyzed.Test results show ...Compressive and flexural strength,fracture energy,as well as fatigue property of pervious cement concrete with either supplementary cementitious materials (SCMs) or polymer intensified,were analyzed.Test results show that the strength development of SCM-modified pervious concrete (SPC) differs from that of polymer-intensified pervious concrete (PPC),and porosity has little effect on their strength growth.PPC has higher flexural strength and remarkably higher flexural-to-compressive strength ratio than SPC at the same porosity level.Results from fracture test of pervious concrete mixes with porosity around 19.5% show that the fracture energy increases with increasing the dosage of polymer,reflecting the ductile damage features rather than brittleness.PPC displays far longer fatigue life than SPC for any given failure probability and at any stress level.It is proved that two-parameter Weibull probability function describes the flexural fatigue of pervious concrete.展开更多
With the increase of terrorist bomb attacks on buildings, there is a need to develop advanced retrofitting techniques to strengthen structures against blast loads. Currently, several guidelines including an Australian...With the increase of terrorist bomb attacks on buildings, there is a need to develop advanced retrofitting techniques to strengthen structures against blast loads. Currently, several guidelines including an Australian version for retrofitting reinforced concrete (RC) structures are available for the design of retrofitting systems against seismic and monotonic loads using steel or fibre reinforced polymer (FRP) plates that can be either adhesively bonded to the surface or near surface mounted to the concrete cover. However, none of these guidelines provide advice suitable for retrofitting structures subjected to blast loads. In this paper, numerical models are used to simulate the performance of retrofitted RC slabs subjected to blast loads. Airblast pressure distributions on the surface of the slabs estimated in a previous study are used as input in the analysis. A material damage model developed previously for concrete and an elastoplastic model for steel bars are employed in this research for modelling reinforced concrete behaviour due to explosive loads. The material models and blast loading are coded into a finite element computer program LS-DYNA3D to do the analysis. With the numerical model, parametric studies are conducted to investigate RC slabs retrofitted by either externally bonded or near-surface mounted plates or GFRP sheets subjected to blast loads. Discussion is made on the effectiveness of the retrofitting system for RC slabs against blast loads.展开更多
Mesoporous polyethylene glycol-resorcinol and formaldehyde(PEG-RF) carbon xerogels were prepared by a new polymer blend method in which PEG-RF mixed organic xerogels were synthesized by blending thermally unstable p...Mesoporous polyethylene glycol-resorcinol and formaldehyde(PEG-RF) carbon xerogels were prepared by a new polymer blend method in which PEG-RF mixed organic xerogels were synthesized by blending thermally unstable polyethylene glycol with organic monomers, resorcinol and formaldehyde and then subjected to pyrolization at 1 000 ℃. The influences of mass ratio of PEG to the theoretical yield of RF xerogel, m(PEG)/m(RF) and the (relative) molecular mass of PEG on the pore structure and electric double layer capacitance(EDLC) performance of PEG-RF carbon xerogels were investigated. The results show that PEG under different conditions leads to the difference of phase separation structure of the polymer blend and thus the change of pore structure of PEG-RF carbon xerogels. Specific surface area and capacity of PEG-RF carbon xerogels in 30% H2SO4 solution can reach (755 m2/g) and 150 F/g, respectively. Their surface can be fully utilized to form electric double layer. However, the pore structure differences of PEG-RF carbon xerogels result in their different EDLC performances. The distributed capacitance effect increases with decreasing the pore size of PEG-RF carbon xerogels.展开更多
文摘Reuse of concrete waste, especially in large quantity, can save not only material but also cost for its disposal. This paper presents experiment results on the use of fine and coarse aggregates from concrete waste in geopolymer mortars and concretes. Geopolymeric cement is an inorganic compounds of aluminosilicates synthesized from precursors with high content of silica and alumina activated by alkali silicate solutions. Geopolymer in this experiment was synthesized from fly ash as the precursor and sodium silicate solution as the activator. Hardening of geopolymers was performed by heating the casted paste in an oven at -60~Cfor 3 to 36 hours. Compressive strength of geopolymer pastes and mortars using either fresh or waste fine aggregates were in the range of 19-26 MPa. Hardening time of 3 hours at 60~C followed by leaving the test pieces at room temperature for 7 day before testing results in similar strength to that of mortars cured for 36 hours at 60~C followed by leaving the samples at room temperature for 3 days. It suggests that optimum strength can be achieved by combination of heating time and rest period before testing, i.e the specimens age. Applying mix design with a target strength of 40 MPa, conventional Portland cement concretes using fresh aggregates reached 70% of its target strength at day-7. Compressive strength of geopolymer concretes with waste aggregates was -25 MPa at day-3 while geopolymer concretes with fresh aggregates achieved -39 MPa at day-3. It can be concluded that geopolymer concretes can achieve the target strength in only 3 days. However, the expected reinforcing effect of coarse aggregates in concrete was ineffective if waste coarse aggregates were used as the strength of the concretes did not increase significantly from that of the mortars. On the other hand, waste fine aggregates can be reused for making geopolymer mortars having the same strength as the geopolymer mortars using fresh aggregates.
文摘This research investigated the water permeability coefficient of fly ash-based geopolymer concrete. The effect of sodium hydroxide (Na(OH)) concentrations and Si/AI ratios on water permeability and compressive strength of geopolymer concretes were studied. The geopolymer concrete were prepared from Mae Moh fly ash with sodium silicate (Na2SiO3) and sodium hydroxide (Na(OH)) solutions. In the first group, concentration of Na(OH) was varied at 8, 10, 12, and 14 molar and the Si/AI ratio was kept constant at 1.98. In the second group, a concentration of Na(OH) was kept constant at 14 molar and the Si/AI ratio was varied at 2.2, 2.4, 2.6, and 2.8. The hardened concretes were air-cured in laboratory. The compressive strength and water permeability were tested at the age of 28 and 60 days. The results showed that compressive strengths of geopolymer concrete significantly increased with the increase of a concentration of Na(OH) and Si/AI ratio. The water permeability coefficients increase with the decrease of compressive strength. In addition, the high reduction of water permeability coefficients with time was found in geopolymer concrete with lower Na(OH) concentration than that higher Na(OH) concentration.
基金Project(2009CB623201) supported by the National Basic Research Program of ChinaProject(G0510) supported by the Key Laboratory for Refractories and High-temperature Ceramics of Hubei Province, China
文摘Geopolymer-lightweight aggregate refractory concrete (GLARC) was prepared with geopolymer and lightweight aggregate. The mechanical property and heat-resistance (950 ℃) of GLARC were investigated. The effects of size of aggregate and mass ratio of geopolymer to aggregate on mechanical and thermal properties were also studied. The results show that the highest compressive strength of the heated refractory concrete is 43.3 MPa,and the strength loss is only 42%. The mechanical property and heat-resistance are influenced by the thickness of geopolymer covered with aggregate,which can be expressed as the quantity of geopolymer on per surface area of aggregate. In order to show the relationship between the thickness of geopolymer covered with aggregate and the thermal property of concrete,equal thickness model is presented,which provides a reference for the mix design of GLARC. For the haydite sand with size of 1.18-4.75 mm,the best amount of geopolymer per surface area of aggregate should be in the range of 0.300-0.500 mg/mm2.
基金Project (No. 200431882021) supported by the Western Communi-cation Construction and Science & Technological Project,China
文摘Based on the Canadian Standards Association (CSA) criteria,105 pullout specimens were tested to investigate the effect of different rib geometries on bond strength of glass fiber reinforced polymer (GFRP) rebars embedded in concrete. Two kinds of conventional reinforcing rebars were also studied for comparison. Each rebar was embedded in a 150 mm concrete cube,with the embedded length being four times the rebar diameter. The experimental parameters were the rebar type,rebar component,rebar diameter,rebar surface texture,rib height,rib spacing and rib width. Theoretical analysis was also carried out to explain the experimental phenomena and results. The experimental and theoretical results indicated that the bond strength of GFRP rebars was about 13%~35% lower than that of steel rebars. The bond strength and bond-slip behavior of the specially machined rebars varied with the rebar type,rebar diameter,rebar surface texture,rib height,rib spacing and rib width. Using the results,design recom-mendations were made concerning optimum rib geometries of GFRP ribbed rebars with superior bond-slip characteristics,which concluded that the optimal rib spacing of ribbed rebars is the same as the rebar diameter,and that the optimal rib height is 6% of the rebar diameter.
基金Supported by the Special Funds of Technological Development for Scientific Research Institutes from the Ministry of Science and Technology of China(2010EG111022,2011EG111307,2012EG111122)the Program for Overseas Talents(OTP-2013-015)the Program for Innovative Research Team(IG201204N)from Beijing Academy of Science and Technology
文摘Coagulation mechanisms of polyaluminum chloride(PACl) at various dosages were studied using a conventional jar test at different final and initial pH values during treating kaolin suspension. The optimal final pH and dosages for PACl were obtained based on residual turbidity and zeta potential of flocs. The coagulation zones at various PACl dosages and solution p H values were developed and compared with those of alum. It is found that the optimal mechanism under acidic condition is charge neutralization, while alkaline condition will facilitate the coagulation of PACl. Both charge neutralization coagulation and sweep coagulation can achieve high coagulation efficiency under the alkaline condition ranging from final p H 7.0 to 10.0. Stabilization, charge neutralization destabilization, restabilization and sweep zones occur successively with increasing PACl dosages with the final p H values fixed at 7.0 and 8.0, but restabilization zone disappears at final p H 10.0. When the final p H is not controlled and consequently decreases with increasing PACl dosage, no typical sweep zone can be observed and the coagulant efficiency decreases at high PACl dosage. It seems that the final pH is more meaningful than the initial p H for coagulation. Charge neutralization coagulation efficiency is dominated by zeta potential of flocs and PACl precipitates. The charge neutralization and sweep coagulation zones of PACl are broader in the ranges of coagulant dosage and p H than those of alum. The results are helpful for us to treat water and wastewater using PACl and to understand the coagulation process of PACl.
文摘The effects of the coagulation-flocculation process using polyaluminium chloride (PAC) and its aids on the removal of organics and nutrient in the combined sewage from Shanghai Zhuyuan First Municipal Wastewater Treatment Plant are studied. The coagulant aids include cationic polyacrylamide (PAM), polyvinyl alcohol (PVA), activated silica (AS) and a kind of polyelectrolyte called AN prepared by the authors. The coagulating solution was added to the glass jar holding 1 L wastewater and stirred to a uniform mixture which was stilled to let the supernatant turn out. The supernatant was analyzed to see the removal efficiencies of suspended solid (SS), chemical oxygen demand (COD), soluble chemical oxygen demand (S-COD), total phosphorus (TP) and orthophosphate (PO4 -P). It is found that PAC is efficient in reducing those five matters, PAM, PVA and 3? AN each faciliates the reduction of TP, SS, COD and S-COD and has little contribution to the removal of ammonia nitrigen and orthophosphate, and AS is noneffective at all. The coagulation-flocculation process with PAC has demonstrated applicable to the treatment of combined sewage in Shanghai, and it involves mainly the sweep coagulation mechanism and maybe some more complicated mechanism as well.
基金Supported by the National High Technology Research and Development Program of China (2009AA063901)the Special Funds for Technological Development of Research Institutes from the Ministry of Science and Technology of China(2010EG111022, 2011EG111307)+1 种基金the Budding Program (2011A-12-L)the Program for Innovative Research Team(IG201204N) of Beijing Academy of Science and Technology
文摘Conventional jar tests and on-line size monitoring were used to investigate the effects of slow-mixing intensity and duration on residual turbidity and floc size during charge neutralization coagulation and sweep floc- culation with polyaluminum chloride. The compensatory effect of slow-mixing on coagulation performance fol- low!ng inadequate_or excessive rapid-mi_xing was also examined. It is found that slowTmixing intensity has a more marked positive ettect on charge neutralization coas;ulatlon tlaan on sweep tlocculatlon. llle optimal root-mean- square velocity gradient, G, for slow-mixing is 15 s-' for both coagulation mechanisms, and charge neutralization coagulation requires a longer slow-mixing duration. The optimal slow-mixing duration, based on residual turbidity,is longer than the time to tbrm the largest mean Ilocs. The optimal product of G and mixing duration, GT, lbr slow-mixing during charge neutralization coagulation (13500) are higher than that during sweep flocculation (4500) and both are less than the range of values recommended by the American Water Works Association (24000-84000).The optimal GT value under various slow-mixing conditions increases with G. Appropriate extension'of slow-mixing duration during charge neutralization coagulation can improve coagulation performance after an inadequate or excessive rapid-mixing duration, but during sweep flocculation, appropriate shortening of slow-mixing duration after an excessive rapid-mixing or appropriate extension of slow-mixing duration after an inadequate rapid-mixing is favorable.
基金Project(kfj080205)supported by Key Laboratory of Road Structure and Material of Ministry of Transport(Changsha),China
文摘Compressive and flexural strength,fracture energy,as well as fatigue property of pervious cement concrete with either supplementary cementitious materials (SCMs) or polymer intensified,were analyzed.Test results show that the strength development of SCM-modified pervious concrete (SPC) differs from that of polymer-intensified pervious concrete (PPC),and porosity has little effect on their strength growth.PPC has higher flexural strength and remarkably higher flexural-to-compressive strength ratio than SPC at the same porosity level.Results from fracture test of pervious concrete mixes with porosity around 19.5% show that the fracture energy increases with increasing the dosage of polymer,reflecting the ductile damage features rather than brittleness.PPC displays far longer fatigue life than SPC for any given failure probability and at any stress level.It is proved that two-parameter Weibull probability function describes the flexural fatigue of pervious concrete.
文摘With the increase of terrorist bomb attacks on buildings, there is a need to develop advanced retrofitting techniques to strengthen structures against blast loads. Currently, several guidelines including an Australian version for retrofitting reinforced concrete (RC) structures are available for the design of retrofitting systems against seismic and monotonic loads using steel or fibre reinforced polymer (FRP) plates that can be either adhesively bonded to the surface or near surface mounted to the concrete cover. However, none of these guidelines provide advice suitable for retrofitting structures subjected to blast loads. In this paper, numerical models are used to simulate the performance of retrofitted RC slabs subjected to blast loads. Airblast pressure distributions on the surface of the slabs estimated in a previous study are used as input in the analysis. A material damage model developed previously for concrete and an elastoplastic model for steel bars are employed in this research for modelling reinforced concrete behaviour due to explosive loads. The material models and blast loading are coded into a finite element computer program LS-DYNA3D to do the analysis. With the numerical model, parametric studies are conducted to investigate RC slabs retrofitted by either externally bonded or near-surface mounted plates or GFRP sheets subjected to blast loads. Discussion is made on the effectiveness of the retrofitting system for RC slabs against blast loads.
文摘Mesoporous polyethylene glycol-resorcinol and formaldehyde(PEG-RF) carbon xerogels were prepared by a new polymer blend method in which PEG-RF mixed organic xerogels were synthesized by blending thermally unstable polyethylene glycol with organic monomers, resorcinol and formaldehyde and then subjected to pyrolization at 1 000 ℃. The influences of mass ratio of PEG to the theoretical yield of RF xerogel, m(PEG)/m(RF) and the (relative) molecular mass of PEG on the pore structure and electric double layer capacitance(EDLC) performance of PEG-RF carbon xerogels were investigated. The results show that PEG under different conditions leads to the difference of phase separation structure of the polymer blend and thus the change of pore structure of PEG-RF carbon xerogels. Specific surface area and capacity of PEG-RF carbon xerogels in 30% H2SO4 solution can reach (755 m2/g) and 150 F/g, respectively. Their surface can be fully utilized to form electric double layer. However, the pore structure differences of PEG-RF carbon xerogels result in their different EDLC performances. The distributed capacitance effect increases with decreasing the pore size of PEG-RF carbon xerogels.