期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
面向文本结构的混合分层注意力网络的话题归类
被引量:
4
1
作者
车蕾
杨小平
+2 位作者
王良
梁天新
韩镇远
《中文信息学报》
CSCD
北大核心
2019年第5期93-102,112,共11页
针对目前话题归类模型中文本逻辑结构特征与文本组织结构特征利用不充分的问题,该文提出一种面向文本结构的混合分层注意力网络的话题归类模型(TSOHHAN)。文本结构包括逻辑结构和组织结构,文本的逻辑结构包括标题和正文等信息;文本的组...
针对目前话题归类模型中文本逻辑结构特征与文本组织结构特征利用不充分的问题,该文提出一种面向文本结构的混合分层注意力网络的话题归类模型(TSOHHAN)。文本结构包括逻辑结构和组织结构,文本的逻辑结构包括标题和正文等信息;文本的组织结构包括字—词语—句层次。TSOHHAN模型采用竞争机制融合标题和正文以增强文本逻辑结构特征在话题归类中的作用;同时该模型采用字-词语-句层次的注意力机制增强文本组织结构特征在话题归类中的作用。在4个标准数据集上的实验结果表明,TSOHHAN模型能够提高话题归类任务的准确率。
展开更多
关键词
深度学习
注意力
机制
混合分层注意力网络
话题归类
下载PDF
职称材料
题名
面向文本结构的混合分层注意力网络的话题归类
被引量:
4
1
作者
车蕾
杨小平
王良
梁天新
韩镇远
机构
中国人民大学信息学院
北京科技大学信息管理学院
出处
《中文信息学报》
CSCD
北大核心
2019年第5期93-102,112,共11页
基金
北京市教委社科计划(SM201911232003)
国家自然科学基金(61572079)
北京市教委科技计划(KM201711417004)
文摘
针对目前话题归类模型中文本逻辑结构特征与文本组织结构特征利用不充分的问题,该文提出一种面向文本结构的混合分层注意力网络的话题归类模型(TSOHHAN)。文本结构包括逻辑结构和组织结构,文本的逻辑结构包括标题和正文等信息;文本的组织结构包括字—词语—句层次。TSOHHAN模型采用竞争机制融合标题和正文以增强文本逻辑结构特征在话题归类中的作用;同时该模型采用字-词语-句层次的注意力机制增强文本组织结构特征在话题归类中的作用。在4个标准数据集上的实验结果表明,TSOHHAN模型能够提高话题归类任务的准确率。
关键词
深度学习
注意力
机制
混合分层注意力网络
话题归类
Keywords
deep learning
attention mechanism
hybrid hierarchical attention networks
topic classification
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
面向文本结构的混合分层注意力网络的话题归类
车蕾
杨小平
王良
梁天新
韩镇远
《中文信息学报》
CSCD
北大核心
2019
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部