通过理论计算、仿真与实验验证的方式研制出3.3 kV/50 A 4H-碳化硅(SiC)结势垒肖特基(JBS)二极管芯片。芯片漂移区厚度33μm,掺杂浓度2×1015 cm-3,p+结区深度0.6μm,p+结区掺杂浓度5×1018 cm-3。芯片终端采用非均匀场限环结...通过理论计算、仿真与实验验证的方式研制出3.3 kV/50 A 4H-碳化硅(SiC)结势垒肖特基(JBS)二极管芯片。芯片漂移区厚度33μm,掺杂浓度2×1015 cm-3,p+结区深度0.6μm,p+结区掺杂浓度5×1018 cm-3。芯片终端采用非均匀场限环结构。芯片静态测试表明,反向电压3.3 kV时漏电流低于100μA,正向电流50 A时压降小于2.4 V,与设计目标相符。基于该SiC JBS芯片完成了3.3 kV/400 A Si IGBT/SiC JBS混合功率模块研制,测试结果表明混合功率模块降低开关损耗明显,为实现变流装置高效化、小型化及轻量化打下了基础。展开更多
设计并封装了一款1 700 V/1 600 A Si C混合IGBT功率模块,对模块进行了常规电学特性测试,并与全Si功率模块进行了比较。由于Si C肖特基二极管优异的反向恢复特性,使得模块的开关性能得到明显提升,有效降低了模块的能量损耗。通过优化模...设计并封装了一款1 700 V/1 600 A Si C混合IGBT功率模块,对模块进行了常规电学特性测试,并与全Si功率模块进行了比较。由于Si C肖特基二极管优异的反向恢复特性,使得模块的开关性能得到明显提升,有效降低了模块的能量损耗。通过优化模块结构及栅极串联电阻,进一步降低了模块的开关损耗,使Si C混合模块比全Si IGBT模块具有更加优越的性能。展开更多
文摘通过理论计算、仿真与实验验证的方式研制出3.3 kV/50 A 4H-碳化硅(SiC)结势垒肖特基(JBS)二极管芯片。芯片漂移区厚度33μm,掺杂浓度2×1015 cm-3,p+结区深度0.6μm,p+结区掺杂浓度5×1018 cm-3。芯片终端采用非均匀场限环结构。芯片静态测试表明,反向电压3.3 kV时漏电流低于100μA,正向电流50 A时压降小于2.4 V,与设计目标相符。基于该SiC JBS芯片完成了3.3 kV/400 A Si IGBT/SiC JBS混合功率模块研制,测试结果表明混合功率模块降低开关损耗明显,为实现变流装置高效化、小型化及轻量化打下了基础。
文摘设计并封装了一款1 700 V/1 600 A Si C混合IGBT功率模块,对模块进行了常规电学特性测试,并与全Si功率模块进行了比较。由于Si C肖特基二极管优异的反向恢复特性,使得模块的开关性能得到明显提升,有效降低了模块的能量损耗。通过优化模块结构及栅极串联电阻,进一步降低了模块的开关损耗,使Si C混合模块比全Si IGBT模块具有更加优越的性能。