The mathematical model of the modem induction traction motor (TRIM and cutting magnetic circuit traction motor), supplied with IPM inverter with different control technique is presented in the paper. In electric and...The mathematical model of the modem induction traction motor (TRIM and cutting magnetic circuit traction motor), supplied with IPM inverter with different control technique is presented in the paper. In electric and hybrid vehicle are applied: FLMC (Fuzzy Logic Mode Control), SLMC (Sliding Mode Control), NRMC (Neural Regulator Control), and Direct Power and Torque Control for Space Vector Modulated inverter (DPTC SVM). In the special solution of the electric and hybrid vehicle are also applied a Random Switching Frequency Modulation. The control of hybrid vehicle should assure the realization of established transport-assignments in the definite time, at the optimum of energy consumption. One can this realize using. The multi criteria control system. Some results of the computer simulations are presented in the paper. Results of numerical calculation were verified for laboratory model of the electric and hybrid wheel vehicles traction motor.展开更多
The energy management may perform well under normal conditions, but may lead to poor behavior under abnormal situations. To tackle this problem, an optimal control strategy called rule-based equivalent fuel consumptio...The energy management may perform well under normal conditions, but may lead to poor behavior under abnormal situations. To tackle this problem, an optimal control strategy called rule-based equivalent fuel consumption minimization strategy (RECMS) is developed for a new complex hybrid electric vehicle (CHEV). It optimizes the energy efficiency and drive performance to cater for normal and power-loss operations of the tractive motor. Firstly, the strategy formulates a novel objective function based on the equivalent fuel concept. By accounting for the actual fuel cost, the equivalent fuel cost for the electric machines and virtual fuel cost for the drivability, the cost function is obtained. Furthermore, some penalty factors are presented to optimize the performance target. Finally, experiments for a practical CHEV are performed to validate a simulation model. Then simulations are carried out for both rule-based and RECMS. The results show that the optimal energy management is working well.展开更多
文摘The mathematical model of the modem induction traction motor (TRIM and cutting magnetic circuit traction motor), supplied with IPM inverter with different control technique is presented in the paper. In electric and hybrid vehicle are applied: FLMC (Fuzzy Logic Mode Control), SLMC (Sliding Mode Control), NRMC (Neural Regulator Control), and Direct Power and Torque Control for Space Vector Modulated inverter (DPTC SVM). In the special solution of the electric and hybrid vehicle are also applied a Random Switching Frequency Modulation. The control of hybrid vehicle should assure the realization of established transport-assignments in the definite time, at the optimum of energy consumption. One can this realize using. The multi criteria control system. Some results of the computer simulations are presented in the paper. Results of numerical calculation were verified for laboratory model of the electric and hybrid wheel vehicles traction motor.
基金the National High Technology Research and Development Program (863) of China(No. 2006AA11A127)
文摘The energy management may perform well under normal conditions, but may lead to poor behavior under abnormal situations. To tackle this problem, an optimal control strategy called rule-based equivalent fuel consumption minimization strategy (RECMS) is developed for a new complex hybrid electric vehicle (CHEV). It optimizes the energy efficiency and drive performance to cater for normal and power-loss operations of the tractive motor. Firstly, the strategy formulates a novel objective function based on the equivalent fuel concept. By accounting for the actual fuel cost, the equivalent fuel cost for the electric machines and virtual fuel cost for the drivability, the cost function is obtained. Furthermore, some penalty factors are presented to optimize the performance target. Finally, experiments for a practical CHEV are performed to validate a simulation model. Then simulations are carried out for both rule-based and RECMS. The results show that the optimal energy management is working well.