To solve dynamic optimization problem of chemical process (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individua...To solve dynamic optimization problem of chemical process (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individual has its own symbiotic individual, which consists of control parameters. Differential evolution operator is applied for the original individuals to search the global optimization solution. Alopex algorithm is used to co-evolve the symbiotic individuals during the original individual evolution and enhance the fitness of the original individuals. Thus, control parameters are self-adaptively adjusted by Alopex to obtain the real-time optimum values for the original population. To illustrate the whole performance of Alopex-DE, several varietal DEs were applied to optimize 13 benchmark functions. The results show that the whole performance of Alopex-DE is the best. Further, Alopex-DE was applied to solve 4 typical CPDOPs, and the effect of the discrete time degree on the optimization solution was analyzed. The satisfactory result is obtained.展开更多
A sensor scheduling problem was considered for a class of hybrid systems named as the stochastic linear hybrid system (SLHS). An algorithm was proposed to select one (or a group of) sensor at each time from a set ...A sensor scheduling problem was considered for a class of hybrid systems named as the stochastic linear hybrid system (SLHS). An algorithm was proposed to select one (or a group of) sensor at each time from a set of sensors. Then, a hybrid estimation algorithm was designed to compute the estimates of the continuous and discrete states of the SLHS based on the observations from the selected sensors. As the sensor scheduling algorithm is designed such that the Bayesian decision risk is minimized, the true discrete state can be better identified. Moreover, the continuous state estimation performance of the proposed algorithm is better than that of hybrid estimation algorithms using only predetermined sensors. Finallyo the algorithms are validated through an illustrative target tracking example.展开更多
Based on the structure of Elman and Jordan neural networks, a new dynamic neural network is constructed. The network can remember the past state of the hidden layer and adjust the effect of the past signal to the curr...Based on the structure of Elman and Jordan neural networks, a new dynamic neural network is constructed. The network can remember the past state of the hidden layer and adjust the effect of the past signal to the current value in real-time. And in order to enhance the signal processing capabilities, the feedback of output layer nodes is increased. A hybrid learning algorithm based on genetic algorithm (GA) and error back propagation algorithm (BP) is used to adjust the weight values of the network, which can accelerate the rate of convergence and avoid getting into local optimum. Finally, the improved neural network is utilized to identify underwater vehicle (UV) ' s hydrodynamic model, and the simulation results show that the neural network based on hybrid learning algorithm can improve the learning rate of convergence and identification nrecision.展开更多
基金Project(2013CB733600) supported by the National Basic Research Program of ChinaProject(21176073) supported by the National Natural Science Foundation of China+2 种基金Project(20090074110005) supported by Doctoral Fund of Ministry of Education of ChinaProject(NCET-09-0346) supported by Program for New Century Excellent Talents in University of ChinaProject(09SG29) supported by "Shu Guang", China
文摘To solve dynamic optimization problem of chemical process (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individual has its own symbiotic individual, which consists of control parameters. Differential evolution operator is applied for the original individuals to search the global optimization solution. Alopex algorithm is used to co-evolve the symbiotic individuals during the original individual evolution and enhance the fitness of the original individuals. Thus, control parameters are self-adaptively adjusted by Alopex to obtain the real-time optimum values for the original population. To illustrate the whole performance of Alopex-DE, several varietal DEs were applied to optimize 13 benchmark functions. The results show that the whole performance of Alopex-DE is the best. Further, Alopex-DE was applied to solve 4 typical CPDOPs, and the effect of the discrete time degree on the optimization solution was analyzed. The satisfactory result is obtained.
基金Foundation item: Project(2012AA051603) supported by the National High Technology Research and Development Program 863 Plan of China
文摘A sensor scheduling problem was considered for a class of hybrid systems named as the stochastic linear hybrid system (SLHS). An algorithm was proposed to select one (or a group of) sensor at each time from a set of sensors. Then, a hybrid estimation algorithm was designed to compute the estimates of the continuous and discrete states of the SLHS based on the observations from the selected sensors. As the sensor scheduling algorithm is designed such that the Bayesian decision risk is minimized, the true discrete state can be better identified. Moreover, the continuous state estimation performance of the proposed algorithm is better than that of hybrid estimation algorithms using only predetermined sensors. Finallyo the algorithms are validated through an illustrative target tracking example.
基金Supported by the Postdoctoral Science Foundation of China( No. 20100480964 ) , the Basic Research Foundation of Central University ( No. HEUCF100104) and the National Natural Science Foundation of China (No. 50909025/E091002).
文摘Based on the structure of Elman and Jordan neural networks, a new dynamic neural network is constructed. The network can remember the past state of the hidden layer and adjust the effect of the past signal to the current value in real-time. And in order to enhance the signal processing capabilities, the feedback of output layer nodes is increased. A hybrid learning algorithm based on genetic algorithm (GA) and error back propagation algorithm (BP) is used to adjust the weight values of the network, which can accelerate the rate of convergence and avoid getting into local optimum. Finally, the improved neural network is utilized to identify underwater vehicle (UV) ' s hydrodynamic model, and the simulation results show that the neural network based on hybrid learning algorithm can improve the learning rate of convergence and identification nrecision.