期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
中国城市能源电力转型发展战略影响因素量化模型及分析 被引量:1
1
作者 黄子桓 林伟芳 《电网技术》 EI CSCD 北大核心 2024年第10期4106-4114,I0047,I0048,I0046,共12页
随着国家碳达峰、碳中和目标的提出,作为二氧化碳主要排放源的城市能源电力消耗,其转型面临着极大的挑战。由于影响因素的指标计算存在极大的主观差异,该文根据中国296个地级市和4个直辖市的面板数据,基于信息熵提出了中国城市能源电力... 随着国家碳达峰、碳中和目标的提出,作为二氧化碳主要排放源的城市能源电力消耗,其转型面临着极大的挑战。由于影响因素的指标计算存在极大的主观差异,该文根据中国296个地级市和4个直辖市的面板数据,基于信息熵提出了中国城市能源电力转型的影响因素指标体系。为解决传统线性统计学模型对城市能源电力转型影响因素的解释存在局限性的问题,该文提出了“基于SHAP值神经网络-个体随机效应-时间固定效应的混合模型”,分析了中国城市能源电力转型战略影响因素,阐述了中国城市能源电力转型的特征,并分析了不同区域、不同发展规模等级的城市能源电力转型影响因素的差异性特征和产生原因,提出了有针对性的发展战略建议,为能源电力转型战略的制定提供了理论基础。 展开更多
关键词 能源电力转型 个体因素随机效应 时间因素固定效应混合模型 混合神经网络模型 SHAP值
下载PDF
基于空间结构计量的企业经营业绩评价方法 被引量:1
2
作者 李慧锋 《统计与决策》 CSSCI 北大核心 2016年第3期175-178,共4页
空间计量经济学模型的提出,旨在解决多维度空间变量的结构关系。文章基于现有研究成果,将样本数据的空间效应纳入回归模型,以求改善传统计量的精确性与变量指标的可比性问题,为构建企业经营业绩评价体系提供一套可行的分析思路与研究方法。
关键词 空间结构计量 混合固定效应模型 企业经营业绩评价
下载PDF
glmm.hp: an R package for computing individual effect of predictors in generalized linear mixed models 被引量:14
3
作者 Jiangshan Lai Yi Zou +2 位作者 Shuang Zhang Xiaoguang Zhang Lingfeng Mao 《Journal of Plant Ecology》 SCIE CSCD 2022年第6期1302-1307,共6页
Generalized linear mixed models(GLMMs)have been widely used in contemporary ecology studies.However,determination of the relative importance of collinear predictors(i.e.fixed effects)to response variables is one of th... Generalized linear mixed models(GLMMs)have been widely used in contemporary ecology studies.However,determination of the relative importance of collinear predictors(i.e.fixed effects)to response variables is one of the challenges in GLMMs.Here,we developed a novel R package,glmm.hp,to decompose marginal R2^(2)explained by fixed effects in GLMMs.The algorithm of glmm.hp is based on the recently proposed approach‘average shared variance’i.e.used for multivariate analysis.We explained the principle and demonstrated the use of this package by simulated dataset.The output of glmm.hp shows individual marginal R2^(2)s that can be used to evaluate the relative importance of predictors,which sums up to the overall marginal R2^(2).Overall,we believe the glmm.hp package will be helpful in the interpretation of GLMM outcomes. 展开更多
关键词 coefficient of determination commonality analysis fixed effect GLMM hierarchical partitioning marginal R2^(2) relative importance variance partitioning
原文传递
INFERENCE FOR REPEATED MEASURES MODELS UNDER HETEROSCEDASTICITY
4
作者 Weiyan MU Xingzhong XU 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2012年第6期1158-1170,共13页
This paper considers a widely used mixed effects model in repeated measures under het- eroscedasticity. Hypotheses of the equality of the fixed effects and the simultaneous confidence intervals for all pair-wise diffe... This paper considers a widely used mixed effects model in repeated measures under het- eroscedasticity. Hypotheses of the equality of the fixed effects and the simultaneous confidence intervals for all pair-wise differences are discussed. A generalized F-test has been proposed to test the equality of the fixed effects in the model, but simulation results for evaluating its performance have not been shown in the literature. Moreover, the generalized F-test cannot be used to deduce the simultaneous confidence intervals for all pair-wise differences of the fixed effects. The authors propose two new p-values to test the hypotheses of equality of the fixed effects and simultaneous confidence intervals of the differences of the effects based on the generalized pivotal quantities derived in this paper. The authors also compare the empirical performances of the proposed tests and the generalized F-test. The type I error rates and powers of these tests are evaluated using the Monte Carlo simulation. The simulation studies show that the generalized F-test does not perform well in terms of type I error rate under various sample size and parameter combinations. However, the type I error probabilities of the proposed tests are always close to the nominal value. It can also be seen that the simultaneous confidence intervals perform well. 展开更多
关键词 Generalized p-values HETEROSCEDASTICITY mixed effect repeated measures models simul-taneous confidence intervals.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部