期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
面向个性化推荐的两层混合图模型(英文) 被引量:4
1
作者 张少中 陈德人 《计算机系统应用》 2009年第6期26-26,共1页
A hybrid graph model for personalized recom-mendation,which is based on small world network and Bayesian network,is presented.The hybrid graph model has two-layers.The bottom level means user's layer and the upper... A hybrid graph model for personalized recom-mendation,which is based on small world network and Bayesian network,is presented.The hybrid graph model has two-layers.The bottom level means user's layer and the upper one means merchandise's layer.The user's layer is an undirected arcs graph,which describes the relation of the user's nodes by small world network.The undirected arcs inside the connected nodes of user's layer mean the similarity of the preference of users.These arcs are weighted by relational strength.The weight represents node's similarity or link's strength and intensity.Nodes in the same group are more similar to each other or more strongly connected.Users in a same group have the same or similar trendy of preferences.The merchandise's layer describes the relation of goods or produce to others.It is connected by directed links,which means an implicated definition among merchandises,a user that purchase certain merchandise also tends to purchase another.The properties and content of merchandise can be used to show the similarity of the merchandise.The relations between user's layer and merchandise's layer are connected by directed links.The start node of the directed links is a user node in user's layer belonging to some node group,which is gained by small world network.The end node of links is the node of some merchandise of the merchandise's layer.The directed links between the user's layer and the merchandise's layer are connected based on trade information of users.The strength of the relation between users and merchandises can be denoted by the probability parameter.The probability parameter shows a possibility of some users selecting for some merchandises. Firstly,algorithms for users clustering and for anal-ysis of new user interest are presented to construct a hybrid graph model.Two important characteristic parameters,which are in small-world network,are introduced. These are characteristic path length and clustering coefficient.New user interest analysis is to judge which clustering group is the best match by calculating the distance of the new user node to the others user nodes. Secondly,Bayesian network for causality of merchandises and users is constructed.It can be divided two parts,structure learning and parameter learning.The paper adopts the maximal mutual information principle to restrict complexity based on degree of Bayesian network.A new maximal mutual information entropy score function with restriction is defined and a maximum likelihood estimate algorithm is used to calculated parameter. Thirdly,recommending algorithm for new user is presented.In the algorithm,the initialized inputs can utilize some users information including the attributes and browsing process of a user.A proper user-clustering group will be gained by clustering matching with other users in small world network based on this information.Then all the other users nodes,which connect to this user,are selected based on a threshold of path length in the clustering.The recommended merchandise set of these users will be obtained by Bayesian network inference using these nodes as proofs.Finally,a set of recommendation of merchandise is presented for user according to their order of probability distribution. The paper uses the mean absolute error to evaluate the model and MovieLens database is selected.The experimentation shows that the model be accomplished to represent the relationships from user to user, merchandise to merchandise,and user to merchandise.The result shows that the hybrid graph model has a good performance in personalized recommendation. 展开更多
关键词 个性化 两层混合图模型 计算机 软件
下载PDF
基于混合图模型的统计学课程关系分析 被引量:1
2
作者 袁蕾 徐平峰 单娜 《长春工业大学学报》 CAS 2020年第3期219-223,共5页
分析某高校统计学专业学生31门课程的成绩,其中23门成绩为百分制,8门成绩为5级制。对5级制成绩忽略进行建模,利用混合图模型刻画课程之间的关系。
关键词 混合图模型 可分解模型 模型 森林模型 课程关系
下载PDF
复小波域混合概率图模型的超声医学图像分割 被引量:9
3
作者 夏平 施宇 +3 位作者 雷帮军 龚国强 胡蓉 师冬霞 《自动化学报》 EI CAS CSCD 北大核心 2021年第1期185-196,共12页
针对存在大量不规则斑点噪声、目标边缘弱化的超声医学图像分割中较难识别目标的问题,提出了一种复小波域中混合概率图模型的超声医学图像分割算法.采用具有近似平移不变性和良好方向选择性的双树复小波变换(Dual tree-complex wavelet ... 针对存在大量不规则斑点噪声、目标边缘弱化的超声医学图像分割中较难识别目标的问题,提出了一种复小波域中混合概率图模型的超声医学图像分割算法.采用具有近似平移不变性和良好方向选择性的双树复小波变换(Dual tree-complex wavelet transform,DT-CWT)提取超声医学图像6个方向的高频特征信息;其次,为关联目标的弱特征信息并抑制统计独立的高频噪声,构建了复小波域混合概率图模型;尺度间“父-子”节点间标记采用贝叶斯网络进行建模,尺度内邻域间标记采用马尔科夫随机场(Markov random field,MRF)无向图建模,对复小波域中同尺度的特征系数采用高斯混合模型建模,尺度内同标记的观测特征采用高斯模型建模;最后,用迭代条件模式(Iterated conditional mode,ICM)实现MRF中误分割率最小的能量函数最优解,获取标记场,实现超声医学图像分割.实验结果从视觉效果和定量分析两方面验证表明,本文算法能有效地提取超声图像的弱目标信息,较好地定位目标区域,具有较高的分割精度和鲁棒性. 展开更多
关键词 医学像分割 复小波分析 混合概率模型 马尔科夫随机场 迭代条件模式
下载PDF
概率图模型的表示理论综述 被引量:9
4
作者 刘建伟 黎海恩 +1 位作者 周佳佳 罗雄麟 《电子学报》 EI CAS CSCD 北大核心 2016年第5期1219-1226,共8页
概率图模型结合概率论与图论的知识,利用图结构表示变量的联合概率分布,近年已成为不确定性推理的研究热点.随着概率图模型在实际领域中的应用日益增加,不同的任务和应用环境对概率图模型的表示理论提出了不同的新要求.本文总结出近年... 概率图模型结合概率论与图论的知识,利用图结构表示变量的联合概率分布,近年已成为不确定性推理的研究热点.随着概率图模型在实际领域中的应用日益增加,不同的任务和应用环境对概率图模型的表示理论提出了不同的新要求.本文总结出近年来提出的多种概率图模型的表示理论.最后指出概率图模型的进一步研究方向. 展开更多
关键词 概率模型 连续化 非齐次化 贝叶斯逻辑 马尔可夫逻辑 非参数化 矩阵正态模型 COPULA函数 混合图模型
下载PDF
基于随机游走模型的物体识别
5
作者 林霄 肖国强 +1 位作者 吴松 邱开金 《计算机工程与应用》 CSCD 2013年第21期145-151,共7页
针对传统物体识别算法中只依赖于视觉特征进行识别的单一性缺陷,提出了一种结合先验关系的物体识别算法。在训练阶段,通过图模型结构化表示先验关系,分别构建了图像—图像、语义—语义两个子图以及两子图之间的联系,利用该图模型建立随... 针对传统物体识别算法中只依赖于视觉特征进行识别的单一性缺陷,提出了一种结合先验关系的物体识别算法。在训练阶段,通过图模型结构化表示先验关系,分别构建了图像—图像、语义—语义两个子图以及两子图之间的联系,利用该图模型建立随机游走模型;在识别阶段,建立待识别图像与随机游走模型中的图像节点和语义节点的关系,在该概率模型上进行随机游走,将随机游走的结果作为物体识别的结果。实验结果证明了结合先验关系的物体识别算法的有效性;提出的物体识别算法具有较强的识别性能。 展开更多
关键词 物体识别 先验关系 混合图模型 随机游走模型
下载PDF
基于键合图的电力电子电路建模与仿真 被引量:2
6
作者 揭由翔 陈则王 豆金昌 《计算机与现代化》 2013年第7期11-15,共5页
随着DC-DC变换器的实际应用领域的不断扩大,人们对变换器系统的稳定性提出了更高的要求,因此,精确而有效的建模和仿真对于变换器的发展有着重大的意义。本文以电力电子Buck电路为例,提出混合键合图模型和键合图平均模型两种模型,这两种... 随着DC-DC变换器的实际应用领域的不断扩大,人们对变换器系统的稳定性提出了更高的要求,因此,精确而有效的建模和仿真对于变换器的发展有着重大的意义。本文以电力电子Buck电路为例,提出混合键合图模型和键合图平均模型两种模型,这两种模型都是在键合图建模理论的基础上,根据电路中开关控制方式的不同而得到的。首先经过分析得到Buck电路的两种键合图模型,并在GME(Generic Modeling Environment)软件中搭建模型,然后通过该软件将它转换为Matlab框图模型并仿真,最后将仿真结果与实际电路模型的输出波形进行对比分析,验证了两种模型的可行性和正确性。 展开更多
关键词 键合 电力电子电路 混合键合模型 键合平均模型
下载PDF
面向零件不可拆的复杂产品拆卸序列规划 被引量:4
7
作者 宋小文 潘兴兴 +1 位作者 冯坤 周伟东 《计算机集成制造系统》 EI CSCD 北大核心 2013年第6期1249-1255,共7页
针对实际拆卸过程中可能遇到的零件不可拆问题,为提高拆卸效率、降低拆卸成本,提出了面向零件不可拆的复杂产品拆卸序列规划方法。为更好地表达产品拆卸信息,构建了拆卸混合图模型;为产生新拆卸方案,提出了模型重构方法,该方法通过构建... 针对实际拆卸过程中可能遇到的零件不可拆问题,为提高拆卸效率、降低拆卸成本,提出了面向零件不可拆的复杂产品拆卸序列规划方法。为更好地表达产品拆卸信息,构建了拆卸混合图模型;为产生新拆卸方案,提出了模型重构方法,该方法通过构建已拆卸零部件集、受影响零部件集、子受影响零部件集来实现模型的更新;根据目标拆卸体的可拆卸性,并结合拆卸序列优化算法来产生具体的拆卸方案和拆卸序列。以洗衣机为例对所提方法进行了验证,结果表明该方法较好地解决了零件不可拆问题,产生了切实可行的拆卸方案和拆卸序列,降低了拆卸成本、提高了拆卸效率和拆卸安全性。 展开更多
关键词 拆卸混合图模型 零件不可拆卸性 模型重构 拆卸序列规划
下载PDF
考虑失效状态的废旧机械产品选择性拆卸序列规划方法
8
作者 王蕾 何宸 +2 位作者 曹建华 夏绪辉 张泽琳 《现代制造工程》 CSCD 北大核心 2022年第5期145-152,93,共9页
针对因废旧机械产品失效状态不确定,导致拆卸目标多样、拆卸过程复杂、拆卸效率和效益不稳定的问题,提出考虑失效状态的废旧机械产品选择性拆卸序列规划方法。构建零件失效属性值矩阵,采用零件可再制造性、拆卸难度、再制造加工成本和... 针对因废旧机械产品失效状态不确定,导致拆卸目标多样、拆卸过程复杂、拆卸效率和效益不稳定的问题,提出考虑失效状态的废旧机械产品选择性拆卸序列规划方法。构建零件失效属性值矩阵,采用零件可再制造性、拆卸难度、再制造加工成本和再制造能耗4个指标,对废旧机械产品零件进行优先拆卸等级排序,选择合适的拆卸目标;构建产品拆卸混合图模型以及零件连接矩阵、零件优先矩阵;基于产品拆卸混合图模型和拆卸序列优化算法生成最优拆卸序列方案。以二级减速器为例,验证所提方法的可行性和有效性。 展开更多
关键词 再制造 失效状态 拆卸混合图模型 拆卸序列规划
下载PDF
零件分类条件下废旧产品拆卸序列多目标优化 被引量:5
9
作者 魏伟杰 张华 +1 位作者 江志刚 张旭刚 《现代制造工程》 CSCD 北大核心 2018年第9期127-133,共7页
产品拆卸序列的优化有助于提高产品的拆卸效率和经济性。分析废旧产品的拆卸过程,对废旧产品中的零件进行分类,将其零件分为破坏性拆卸零件和常规拆卸零件两类,把零件分类的概念引入拆卸模型中,进而建立一个改进拆卸混合图模型,将常规... 产品拆卸序列的优化有助于提高产品的拆卸效率和经济性。分析废旧产品的拆卸过程,对废旧产品中的零件进行分类,将其零件分为破坏性拆卸零件和常规拆卸零件两类,把零件分类的概念引入拆卸模型中,进而建立一个改进拆卸混合图模型,将常规拆卸方法和破坏性拆卸方法有效地结合起来应用到废旧产品的拆卸过程中。构建以最小拆卸时间和最小拆卸成本为目标的产品拆卸序列多目标优化函数,运用粒子群算法对该目标函数进行求解。通过实例验证该方法的可行性和有效性。 展开更多
关键词 拆卸序列 零件分类 改进拆卸混合图模型 多目标优化 粒子群算法
下载PDF
基于遗传蝙蝠算法的选择性拆卸序列规划 被引量:11
10
作者 朱卓悦 徐志刚 +1 位作者 沈卫东 杨得玉 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2018年第11期2120-2127,2135,共9页
针对产品选择性拆卸序列规划问题,提出一种基于遗传蝙蝠算法的产品拆卸序列规划方法.利用Python语言对传统蝙蝠算法进行离散化处理,并在种群更新过程中引入遗传算法的交叉与变异机制,生成遗传蝙蝠算法,以增强解搜索的多样性;在构建适应... 针对产品选择性拆卸序列规划问题,提出一种基于遗传蝙蝠算法的产品拆卸序列规划方法.利用Python语言对传统蝙蝠算法进行离散化处理,并在种群更新过程中引入遗传算法的交叉与变异机制,生成遗传蝙蝠算法,以增强解搜索的多样性;在构建适应度函数模型时以拆卸工具的变化次数与拆卸方向的重新定位次数作为评价指标,同时加入零部件的回收收益指标,使适应度函数更加完善.以工业机械臂为实例,利用所提方法进行产品拆卸序列规划求解,对比传统蝙蝠算法以及遗传算法的求解结果,发现在一定的种群数目下,所提方法收敛时间较短;在不同种群数目下,所提方法得到的适应度函数最优值质量较高,从而验证了遗传蝙蝠算法的搜索优越性. 展开更多
关键词 选择性拆卸序列规划 蝙蝠算法 遗传算法 拆卸混合图模型 拆卸求解
下载PDF
基于离散布谷鸟搜索算法的拆卸序列规划方法 被引量:5
11
作者 居文晋 王小平 安鲁陵 《组合机床与自动化加工技术》 北大核心 2020年第10期14-17,22,共5页
文章提出一种基于离散布谷鸟搜索算法的拆卸序列规划性方法,该方法以赋权拆卸混合图模型为理论基础,并以此为基础建立了可拆卸条件。首先,建立离散布谷鸟搜索算法和拆卸序列规划之间的映射关系;其次,基于最优拆卸方向分层筛选顶点集合... 文章提出一种基于离散布谷鸟搜索算法的拆卸序列规划性方法,该方法以赋权拆卸混合图模型为理论基础,并以此为基础建立了可拆卸条件。首先,建立离散布谷鸟搜索算法和拆卸序列规划之间的映射关系;其次,基于最优拆卸方向分层筛选顶点集合组成初始种群;再次,利用离散Levy飞行对鸟巢位置进行变换,利用离散巢寄生行为进行鸟巢的局部调整。在达到最大迭代次数后,对属性值比较好的几个鸟巢进行解码并判断可行性,最终得到最优可行拆卸序列。以管路模型为例,分别利用离散布谷鸟搜索算法、遗传蝙蝠算法和粒子群优化算法进行了拆卸序列规划。经过比较后发现,该方法求解出的拆卸序列质量较高。 展开更多
关键词 拆卸序列规划 赋权拆卸混合图模型 最优拆卸方向 离散布谷鸟搜索算法
下载PDF
考虑产品故障特征的目标选择性拆卸序列规划 被引量:9
12
作者 杨得玉 徐志刚 +2 位作者 朱建峰 苏开远 刘维民 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2019年第7期160-170,共11页
针对实际拆卸过程中产品质量的不确定性和模糊性问题,特别是产品普遍存在的故障问题,对拆卸序列方案选择的影响,提出了考虑产品故障特征的目标选择性拆卸序列规划方法.为便于表达产品拆卸信息,构建了拆卸混合图模型;通过提取产品故障特... 针对实际拆卸过程中产品质量的不确定性和模糊性问题,特别是产品普遍存在的故障问题,对拆卸序列方案选择的影响,提出了考虑产品故障特征的目标选择性拆卸序列规划方法.为便于表达产品拆卸信息,构建了拆卸混合图模型;通过提取产品故障特征,构建了产品故障矩阵,并运用专家意见法推导了零部件故障特征与拆卸模型元素的关联度矩阵;为更新拆卸混合图模型,运用模糊三角函数确定了零部件故障特征对拆卸模型元素的影响度,并根据影响度和专家阈值对拆卸模型元素与拆卸信息进行修正以得到故障拆卸混合图模型;最终,基于产品的故障拆卸混合图模型结合拆卸序列优化算法生成了最优的拆卸序列方案.本文以涡轮减速器为例对所提方法进行了验证,结果表明该方法更切合实际的拆卸过程,较好地解决了产品故障对拆卸造成的模糊影响,极大地提高了拆卸序列方案的可行性和拆卸效率,降低了拆卸的盲目性,案例证明所提方法对于解决拆卸序列规划问题更切实有效. 展开更多
关键词 再制造 故障特征 关联度矩阵 故障拆卸混合图模型 拆卸序列规划
下载PDF
含间隙和干摩擦的连杆机构系统动力学研究 被引量:23
13
作者 王威 沈政 +2 位作者 宋玉玲 陈军 师帅兵 《振动与冲击》 EI CSCD 北大核心 2015年第18期210-214,共5页
各种连杆机构铰链处存在的非线性因素对机构运行的稳定性产生巨大的危害,因此考虑间隙和干摩擦非线性因素同时存在对机构系统动力学性能的影响是进一步改善机构运行性能的重要基础。以四杆机构为例,对于连杆两端铰链处存在的间隙和干摩... 各种连杆机构铰链处存在的非线性因素对机构运行的稳定性产生巨大的危害,因此考虑间隙和干摩擦非线性因素同时存在对机构系统动力学性能的影响是进一步改善机构运行性能的重要基础。以四杆机构为例,对于连杆两端铰链处存在的间隙和干摩擦因素,采用开关键合图分别对其建立各自的向量键合图模型;在此基础上,建立间隙和干摩擦同时存在的铰链单元的非因果键合图模型,将其以整体模块形式嵌入四杆机构的向量键合图模型中,得到整体四杆机构混合键合图模型,由混合键合图模型最终建立机构的动力学方程;基于Matlab软件对所建模型进行数值仿真研究,得出非线性因素对连杆动力学性能的影响,对于控制连杆机构的运行精度和稳定性具有指导意义。 展开更多
关键词 连杆机构 系统动力学 间隙 干摩擦 混合键合模型
下载PDF
EFFECTIVE IMAGE SEGMENTATION FRAMEWORK FOR GAUSSIAN MIXTURE MODEL INCORPORATING LOCAL INFORMATION 被引量:3
14
作者 蔡维玲 丁军娣 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第4期266-274,共9页
A new two-step framework is proposed for image segmentation. In the first step, the gray-value distribution of the given image is reshaped to have larger inter-class variance and less intra-class variance. In the sec-... A new two-step framework is proposed for image segmentation. In the first step, the gray-value distribution of the given image is reshaped to have larger inter-class variance and less intra-class variance. In the sec- ond step, the discriminant-based methods or clustering-based methods are performed on the reformed distribution. It is focused on the typical clustering methods-Gaussian mixture model (GMM) and its variant to demonstrate the feasibility of the framework. Due to the independence of the first step in its second step, it can be integrated into the pixel-based and the histogram-based methods to improve their segmentation quality. The experiments on artificial and real images show that the framework can achieve effective and robust segmentation results. 展开更多
关键词 pattern recognition image processing image segmentation Gaussian mixture model (GMM) expectation maximization (EM)
下载PDF
Indirect tension test of epoxy asphalt mixtureusing microstructural finite-element model 被引量:8
15
作者 王江洋 钱振东 《Journal of Southeast University(English Edition)》 EI CAS 2011年第1期65-69,共5页
A finite-element model of the thermosetting epoxy asphalt mixture(EAM) microstructure is developed to simulate the indirect tension test(IDT).Image techniques are used to capture the EAM microstructure which is di... A finite-element model of the thermosetting epoxy asphalt mixture(EAM) microstructure is developed to simulate the indirect tension test(IDT).Image techniques are used to capture the EAM microstructure which is divided into two phases:aggregates and mastic.A viscoelastic constitutive relationship,which is obtained from the results of a creep test,is used to represent the mastic phase at intermittent temperatures.Model simulation results of the stiffness modulus in IDT compare favorably with experimental data.Different loading directions and velocities are employed in order to account for their influence on the modulus and the localized stress of the microstructure model.It is pointed out that the modulus is not consistent when the loading direction changes since the heterogeneous distribution of the mixture internal structure,and the loading velocity affects the localized stress as a result of the viscoelasticity of the mastic.The study results can provide a theoretical basis for the finite-element method,which can be extended to the numerical simulations of asphalt mixture micromechanical behavior. 展开更多
关键词 MICROSTRUCTURE epoxy asphalt mixture image techniques finite-element model indirect tension test
下载PDF
Semantic image annotation based on GMM and random walk model 被引量:1
16
作者 田东平 《High Technology Letters》 EI CAS 2017年第2期221-228,共8页
Automatic image annotation has been an active topic of research in computer vision and pattern recognition for decades.A two stage automatic image annotation method based on Gaussian mixture model(GMM) and random walk... Automatic image annotation has been an active topic of research in computer vision and pattern recognition for decades.A two stage automatic image annotation method based on Gaussian mixture model(GMM) and random walk model(abbreviated as GMM-RW) is presented.To start with,GMM fitted by the rival penalized expectation maximization(RPEM) algorithm is employed to estimate the posterior probabilities of each annotation keyword.Subsequently,a random walk process over the constructed label similarity graph is implemented to further mine the potential correlations of the candidate annotations so as to capture the refining results,which plays a crucial role in semantic based image retrieval.The contributions exhibited in this work are multifold.First,GMM is exploited to capture the initial semantic annotations,especially the RPEM algorithm is utilized to train the model that can determine the number of components in GMM automatically.Second,a label similarity graph is constructed by a weighted linear combination of label similarity and visual similarity of images associated with the corresponding labels,which is able to avoid the phenomena of polysemy and synonym efficiently during the image annotation process.Third,the random walk is implemented over the constructed label graph to further refine the candidate set of annotations generated by GMM.Conducted experiments on the standard Corel5 k demonstrate that GMM-RW is significantly more effective than several state-of-the-arts regarding their effectiveness and efficiency in the task of automatic image annotation. 展开更多
关键词 semantic image annotation Gaussian mixture model GMM) random walk rival penalized expectation maximization (RPEM) image retrieval
下载PDF
Improved dark channel image dehazing method based on Gaussian mixture model 被引量:1
17
作者 GUO Hongguang CHEN Yong 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第1期53-60,共8页
To solve the problem of color distortion after dehazing in the sky region by using the classical dark channel prior method to process the hazy images with large regions of sky,an improved dark channel image dehazing m... To solve the problem of color distortion after dehazing in the sky region by using the classical dark channel prior method to process the hazy images with large regions of sky,an improved dark channel image dehazing method based on Gaussian mixture model is proposed.Firstly,we use the Gaussian mixture model to model the hazy image,and then use the expectation maximization(EM)algorithm to optimize the parameters,so that the hazy image can be divided into the sky region and the non-sky region.Secondly,the sky region is divided into a light haze region,a medium haze region and a heavy haze region according to the different dark channel values to estimate the transmission respectively.Thirdly,the restored image is obtained by combining the atmospheric scattering model.Finally,adaptive local tone mapping for high dynamic range images is used to adjust the brightness of the restored image.The experimental results show that the proposed method can effectively eliminate the color distortion in the sky region,and the restored image is clearer and has better visual effect. 展开更多
关键词 image processing image dehazing Gaussian mixture model expectation maximization(EM)algorithm dark channel theory
下载PDF
Sparse representation-based color visualization method for hyperspectral imaging
18
作者 王立国 刘丹凤 赵亮 《Applied Geophysics》 SCIE CSCD 2013年第2期210-221,237,共13页
In this paper, we designed a color visualization model for sparse representation of the whole hyperspectral image, in which, not only the spectral information in the sparse representation but also the spatial informat... In this paper, we designed a color visualization model for sparse representation of the whole hyperspectral image, in which, not only the spectral information in the sparse representation but also the spatial information of the whole image is retained. After the sparse representation, the color labels of the effective elements of the sparse coding dictionary are selected according to the sparse coefficient and then the mixed images are displayed. The generated images maintain spectral distance preservation and have good separability. For local ground objects, the proposed single-pixel mixed array and improved oriented sliver textures methods are integrated to display the specific composition of each pixel. This avoids the confusion of the color presentation in the mixed-pixel color display and can also be used to reconstruct the original hyperspectral data. Finally, the model effectiveness was proved using real data. This method is promising and can find use in many fields, such as energy exploration, environmental monitoring, disaster warning, and so on. 展开更多
关键词 HYPERSPECTRAL color visualization sparse representation multilayer visualization
下载PDF
A GAUSSIAN MIXTURE MODEL-BASED REGULARIZATION METHOD IN ADAPTIVE IMAGE RESTORATION
19
作者 Liu Peng Zhang Yan Mao Zhigang 《Journal of Electronics(China)》 2007年第1期83-89,共7页
A GMM (Gaussian Mixture Model) based adaptive image restoration is proposed in this paper. The feature vectors of pixels are selected and extracted. Pixels are clustered into smooth,edge or detail texture region accor... A GMM (Gaussian Mixture Model) based adaptive image restoration is proposed in this paper. The feature vectors of pixels are selected and extracted. Pixels are clustered into smooth,edge or detail texture region according to variance-sum criteria function of the feature vectors. Then pa-rameters of GMM are calculated by using the statistical information of these feature vectors. GMM predicts the regularization parameter for each pixel adaptively. Hopfield Neural Network (Hopfield-NN) is used to optimize the objective function of image restoration,and network weight value matrix is updated by the output of GMM. Since GMM is used,the regularization parameters share properties of different kind of regions. In addition,the regularization parameters are different from pixel to pixel. GMM-based regularization method is consistent with human visual system,and it has strong gener-alization capability. Comparing with non-adaptive and some adaptive image restoration algorithms,experimental results show that the proposed algorithm obtains more preferable restored images. 展开更多
关键词 Image processing Gaussian Mixture Model (GMM) Hopfield Neural Network (Hopfield-NN) REGULARIZATION Adaptive image restoration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部