Two non-ionic hydro-fluorocarbon hybrid surfactants with and without hydroxyl groups were synthesized and compared.They exhibited good thermal stability and superior surface activity.It was observed that the hydroxyl ...Two non-ionic hydro-fluorocarbon hybrid surfactants with and without hydroxyl groups were synthesized and compared.They exhibited good thermal stability and superior surface activity.It was observed that the hydroxyl group had a profound effect on modifying the surface tension of their solutions and the morphology of the formed micelles.This effect may be attributed to the rearranging of the alkane group from above the air/aqueous surface to below it and the disrupting of the interfacial water structure induced by the hydroxyl groups.This work provides a strategy to weaken the immiscibility between hydrocarbon and fluorocarbon chains by modifying their orientational structure at the interface,thus it is helpful for the design of surfactants with varied interfacial properties.展开更多
基金supported by the National Natural Science Foundation of China(No.21673285 and No.21973022)the Guangdong Basic and Applied Basic Research Foundation(No.2019A1515012117)the Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme 2019(No.GDUPS2019)。
文摘Two non-ionic hydro-fluorocarbon hybrid surfactants with and without hydroxyl groups were synthesized and compared.They exhibited good thermal stability and superior surface activity.It was observed that the hydroxyl group had a profound effect on modifying the surface tension of their solutions and the morphology of the formed micelles.This effect may be attributed to the rearranging of the alkane group from above the air/aqueous surface to below it and the disrupting of the interfacial water structure induced by the hydroxyl groups.This work provides a strategy to weaken the immiscibility between hydrocarbon and fluorocarbon chains by modifying their orientational structure at the interface,thus it is helpful for the design of surfactants with varied interfacial properties.