Abstract Production planning under uncertainty is considered as one of the most important problems in plant-wide optimization. In this article, first, a stochastic programming model with uniform distribution assumptio...Abstract Production planning under uncertainty is considered as one of the most important problems in plant-wide optimization. In this article, first, a stochastic programming model with uniform distribution assumption is developed for refinery production planning under demand uncertainty, and then a hybrid programming model incorporating the linear programming model with the stochastic programming one by a weight factor is proposed. Subsequently, piecewise linear approximation functions are derived and applied to solve the hybrid programming model-under uniform distribution assumption. Case studies show that the linear approximation algorithm is effective to solve.the hybrid programming model, along with an error≤0.5% when the deviatiorgmean≤20%. The simulation results indicate that the hybrid programming model with an appropriate weight factor (0.1-0.2) can effectively improve the optimal operational strategies under demand uncertainty, achieving higher profit than the linear programming model and the stochastic programming one with about 1.3% and 0.4% enhancement, respectavely.展开更多
By handling the travel cost function artfully, the authors formulate the transportation mixed network design problem (MNDP) as a mixed-integer, nonlinear bilevel programming problem, in which the lower-level problem...By handling the travel cost function artfully, the authors formulate the transportation mixed network design problem (MNDP) as a mixed-integer, nonlinear bilevel programming problem, in which the lower-level problem, comparing with that of conventional bilevel DNDP models, is not a side constrained user equilibrium assignment problem, but a standard user equilibrium assignment problem. Then, the bilevel programming model for MNDP is reformulated as a continuous version of bilevel programming problem by the continuation method. By virtue of the optimal-value function, the lower-level assignment problem can be expressed as a nonlinear equality constraint. Therefore, the bilevel programming model for MNDP can be transformed into an equivalent single-level optimization problem. By exploring the inherent nature of the MNDP, the optimal-value function for the lower- level equilibrium assignment problem is proved to be continuously differentiable and its functional value and gradient can be obtained efficiently. Thus, a continuously differentiable but still nonconvex optimization formulation of the MNDP is created, and then a locally convergent algorithm is proposed by applying penalty function method. The inner loop of solving the subproblem is mainly to implement an Ml-or-nothing assignment. Finally, a small-scale transportation network and a large-scale network are presented to verify the proposed model and algorithm.展开更多
基金the Specialized Research Fund for Doctoral Program of Higher Education of China(20060003087)
文摘Abstract Production planning under uncertainty is considered as one of the most important problems in plant-wide optimization. In this article, first, a stochastic programming model with uniform distribution assumption is developed for refinery production planning under demand uncertainty, and then a hybrid programming model incorporating the linear programming model with the stochastic programming one by a weight factor is proposed. Subsequently, piecewise linear approximation functions are derived and applied to solve the hybrid programming model-under uniform distribution assumption. Case studies show that the linear approximation algorithm is effective to solve.the hybrid programming model, along with an error≤0.5% when the deviatiorgmean≤20%. The simulation results indicate that the hybrid programming model with an appropriate weight factor (0.1-0.2) can effectively improve the optimal operational strategies under demand uncertainty, achieving higher profit than the linear programming model and the stochastic programming one with about 1.3% and 0.4% enhancement, respectavely.
基金supported by the National Basic Research Program of China under Grant No. 2006CB705500the National Natural Science Foundation of China under Grant No. 0631001+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University Volvo Research and Educational Foundations
文摘By handling the travel cost function artfully, the authors formulate the transportation mixed network design problem (MNDP) as a mixed-integer, nonlinear bilevel programming problem, in which the lower-level problem, comparing with that of conventional bilevel DNDP models, is not a side constrained user equilibrium assignment problem, but a standard user equilibrium assignment problem. Then, the bilevel programming model for MNDP is reformulated as a continuous version of bilevel programming problem by the continuation method. By virtue of the optimal-value function, the lower-level assignment problem can be expressed as a nonlinear equality constraint. Therefore, the bilevel programming model for MNDP can be transformed into an equivalent single-level optimization problem. By exploring the inherent nature of the MNDP, the optimal-value function for the lower- level equilibrium assignment problem is proved to be continuously differentiable and its functional value and gradient can be obtained efficiently. Thus, a continuously differentiable but still nonconvex optimization formulation of the MNDP is created, and then a locally convergent algorithm is proposed by applying penalty function method. The inner loop of solving the subproblem is mainly to implement an Ml-or-nothing assignment. Finally, a small-scale transportation network and a large-scale network are presented to verify the proposed model and algorithm.