期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
机动巨标跟踪的自适应混合多模算法
1
作者 戴筠 《上海大学学报(自然科学版)》 CAS CSCD 1998年第4期441-446,共6页
本文介绍了用于机动目标跟踪的自适应混合多模算法.这个算法不需要预先定义模型,它利用一个二级卡尔曼滤波器来估计目标的加速度,这个加速度被用于混合多模算法中具有不同确定性加速度的子滤波器中.文中给出了自适应混合多模算法的一个... 本文介绍了用于机动目标跟踪的自适应混合多模算法.这个算法不需要预先定义模型,它利用一个二级卡尔曼滤波器来估计目标的加速度,这个加速度被用于混合多模算法中具有不同确定性加速度的子滤波器中.文中给出了自适应混合多模算法的一个计算机模拟结果并和无自适应混合多模算法的结果进行了比较. 展开更多
关键词 混合多模算法 IMM算法 机动目标跟踪 机动识别
下载PDF
Multi-objective coordination optimal model for new power intelligence center based on hybrid algorithm 被引量:1
2
作者 刘吉成 牛东晓 乞建勋 《Journal of Central South University》 SCIE EI CAS 2009年第4期683-689,共7页
In order to resolve the coordination and optimization of the power network planning effectively, on the basis of introducing the concept of power intelligence center (PIC), the key factor power flow, line investment a... In order to resolve the coordination and optimization of the power network planning effectively, on the basis of introducing the concept of power intelligence center (PIC), the key factor power flow, line investment and load that impact generation sector, transmission sector and dispatching center in PIC were analyzed and a multi-objective coordination optimal model for new power intelligence center (NPIC) was established. To ensure the reliability and coordination of power grid and reduce investment cost, two aspects were optimized. The evolutionary algorithm was introduced to solve optimal power flow problem and the fitness function was improved to ensure the minimum cost of power generation. The gray particle swarm optimization (GPSO) algorithm was used to forecast load accurately, which can ensure the network with high reliability. On this basis, the multi-objective coordination optimal model which was more practical and in line with the need of the electricity market was proposed, then the coordination model was effectively solved through the improved particle swarm optimization algorithm, and the corresponding algorithm was obtained. The optimization of IEEE30 node system shows that the evolutionary algorithm can effectively solve the problem of optimal power flow. The average load forecasting of GPSO is 26.97 MW, which has an error of 0.34 MW compared with the actual load. The algorithm has higher forecasting accuracy. The multi-objective coordination optimal model for NPIC can effectively process the coordination and optimization problem of power network. 展开更多
关键词 power intelligence center (PIC) coordination optimal model power network planning hybrid algorithm
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部