期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种识别位场场源的混合小波方法
1
作者 刘彩云 《长江大学学报(自科版)(上旬)》 CAS 2015年第1期1-4,86,共4页
连续小波变换已经成功用于位场场源识别问题,该方法可以选择多种母小波,但不同的母小波对场源识别结果影响很大。为避免人为选择母小波的主观影响,在介绍连续小波变换识别位场场源基本原理的基础上提出了一种识别位场场源的混合小波方法... 连续小波变换已经成功用于位场场源识别问题,该方法可以选择多种母小波,但不同的母小波对场源识别结果影响很大。为避免人为选择母小波的主观影响,在介绍连续小波变换识别位场场源基本原理的基础上提出了一种识别位场场源的混合小波方法:首先采用多种母小波进行场源识别,然后计算出场源识别结果的均值和方差,以均值作为最终场源识别结果,以方差描述最终场源识别结果的可信度。试验结果表明,该混合小波方法能避免人为选择母小波的主观影响,提高场源识别的准确性,且具有很强的抗噪声能力。 展开更多
关键词 连续小波变换 位场 场源识别 小波选择 混合小波方法
下载PDF
Translation-invariant wavelet denoising of full-tensor gravity-gradiometer data 被引量:3
2
作者 Zhang Dai-Lei Huang Da-Nian +1 位作者 Yu Ping Yuan Yuan 《Applied Geophysics》 SCIE CSCD 2017年第4期606-619,623,共15页
Denoising of full-tensor gravity-gradiometer data involves detailed information from field sources, especially the data mixed with high-frequency random noise. We present a denoising method based on the translation-in... Denoising of full-tensor gravity-gradiometer data involves detailed information from field sources, especially the data mixed with high-frequency random noise. We present a denoising method based on the translation-invariant wavelet with mixed thresholding and adaptive threshold to remove the random noise and retain the data details. The novel mixed thresholding approach is devised to filter the random noise based on the energy distribution of the wavelet coefficients corresponding to the signal and random noise. The translation- invariant wavelet suppresses pseudo-Gibbs phenomena, and the mixed thresholding better separates the wavelet coefficients than traditional thresholding. Adaptive Bayesian threshold is used to process the wavelet coefficients according to the specific characteristics of the wavelet coefficients at each decomposition scale. A two-dimensional discrete wavelet transform is used to denoise gridded data for better computational efficiency. The results of denoising model and real data suggest that compared with Gaussian regional filter, the proposed method suppresses the white Gaussian noise and preserves the high-frequency information in gravity-gradiometer data. Satisfactory denoising is achieved with the translation-invariant wavelet. 展开更多
关键词 TENSOR gravity gradiometry DENOISING threshold translation-invariant wavelet
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部