期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
最优化问题的蚁群混合差分进化算法研究 被引量:11
1
作者 罗中良 易明珠 刘小勇 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第3期33-36,共4页
在最优化问题求解中,针对采用混合差分进化算法中突变运算的不同选择产生结果存在较大差异,同时提高算法收敛速度与避免早熟,提出在混合差分进化法中,使用蚁群算法进行选择适当的突变运算,加速搜寻全局解,并通过中国旅行商问题的求解表... 在最优化问题求解中,针对采用混合差分进化算法中突变运算的不同选择产生结果存在较大差异,同时提高算法收敛速度与避免早熟,提出在混合差分进化法中,使用蚁群算法进行选择适当的突变运算,加速搜寻全局解,并通过中国旅行商问题的求解表明其有效性。 展开更多
关键词 蚁群混合差分进化法 最优化 中国旅行商问题
下载PDF
电力系统稳定器的混合差分进化算法设计研究
2
作者 郭军炜 李栩 《电子产品世界》 2015年第11期34-38,共5页
本文采用混合差分进化算法设计微电网中的稳定器。首先,对单发电机对无线汇流排系统的稳定器进行研究,变化发电机有功、无功功率及输电线阻抗,采用混合差分进化算法,指定不同目标函数极点使稳定器工作于复平面左半部分,以求优良好的动... 本文采用混合差分进化算法设计微电网中的稳定器。首先,对单发电机对无线汇流排系统的稳定器进行研究,变化发电机有功、无功功率及输电线阻抗,采用混合差分进化算法,指定不同目标函数极点使稳定器工作于复平面左半部分,以求优良好的动态稳定性能。然后,再延伸到多机和复杂网络结构的电网中。 展开更多
关键词 电力系统稳定器 机电模式 极点指定 混合差分进化法
下载PDF
混合补偿优化控制策略、装置配置方法及补偿效果验证分析 被引量:2
3
作者 窦圣霞 梁飞 汪海燕 《电子器件》 CAS 北大核心 2020年第6期1287-1293,共7页
随着近年工业的飞速发展,配电系统架构不平衡及配电变压器的大量使用造成了配电系统三相不平衡。从三相不平衡及无功补偿原理入手,采用相间、分相以及动态补偿的混合补偿策略,并结合混合差分进化法对补偿量进行寻优处理,以保证在配电系... 随着近年工业的飞速发展,配电系统架构不平衡及配电变压器的大量使用造成了配电系统三相不平衡。从三相不平衡及无功补偿原理入手,采用相间、分相以及动态补偿的混合补偿策略,并结合混合差分进化法对补偿量进行寻优处理,以保证在配电系统电压补偿中不过补,达到最优补偿效果。仿真分析及工程案例研究显示,混合补偿策略能够有效降低配电系统的三相不平衡度,动态补偿系统的稳定性及有效性较高,具有良好的市场应用前景。 展开更多
关键词 配电系统 三相不平衡 动态补偿 混合差分进化法
下载PDF
Hybrid particle swarm optimization with differential evolution and chaotic local search to solve reliability-redundancy allocation problems 被引量:5
4
作者 谭跃 谭冠政 邓曙光 《Journal of Central South University》 SCIE EI CAS 2013年第6期1572-1581,共10页
In order to solve reliability-redundancy allocation problems more effectively, a new hybrid algorithm named CDEPSO is proposed in this work, which combines particle swarm optimization (PSO) with differential evoluti... In order to solve reliability-redundancy allocation problems more effectively, a new hybrid algorithm named CDEPSO is proposed in this work, which combines particle swarm optimization (PSO) with differential evolution (DE) and a new chaotic local search. In the CDEPSO algorithm, DE provides its best solution to PSO if the best solution obtained by DE is better than that by PSO, while the best solution in the PSO is performed by chaotic local search. To investigate the performance of CDEPSO, four typical reliability-redundancy allocation problems were solved and the results indicate that the convergence speed and robustness of CDEPSO is better than those of PSO and CPSO (a hybrid algorithm which only combines PSO with chaotic local search). And, compared with the other six improved meta-heuristics, CDEPSO also exhibits more robust performance. In addition, a new performance was proposed to more fairly compare CDEPSO with the same six improved recta-heuristics, and CDEPSO algorithm is the best in solving these problems. 展开更多
关键词 particle swarm optimization differential evolution chaotic local search reliability-redundancy allocation
下载PDF
A Hybrid Algorithm Based on Differential Evolution and Group Search Optimization and Its Application on Ethylene Cracking Furnace 被引量:8
5
作者 年笑宇 王振雷 钱锋 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第5期537-543,共7页
To find the optimal operational condition when the properties of feedstock changes in the cracking furnace online,a hybrid algorithm named differential evolution group search optimization(DEGSO) is proposed,which is b... To find the optimal operational condition when the properties of feedstock changes in the cracking furnace online,a hybrid algorithm named differential evolution group search optimization(DEGSO) is proposed,which is based on the differential evolution(DE) and the group search optimization(GSO).The DEGSO combines the advantages of the two algorithms:the high computing speed of DE and the good performance of the GSO for preventing the best particle from converging to local optimum.A cooperative method is also proposed for switching between these two algorithms.If the fitness value of one algorithm keeps invariant in several generations and less than the preset threshold,it is considered to fall into the local optimization and the other algorithm is chosen.Experiments on benchmark functions show that the hybrid algorithm outperforms GSO in accuracy,global searching ability and efficiency.The optimization of ethylene and propylene yields is illustrated as a case by DEGSO.After optimization,the yield of ethylene and propylene is increased remarkably,which provides the proper operational condition of the ethylene cracking furnace. 展开更多
关键词 group search optimization differential evolution ethylene and propylene yields cracking furnace
下载PDF
Improved Hybrid Differential Evolution-Estimation of Distribution Algorithm with Feasibility Rules for NLP/MINLP Engineering Optimization Problems 被引量:4
6
作者 摆亮 王钧炎 +1 位作者 江永亨 黄德先 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第6期1074-1080,共7页
In this paper, an improved hybrid differential evolution-estimation of distribution algorithm (IHDE-EDA) is proposed for nonlinear programming (NLP) and mixed integer nonlinear programming (MINLP) models in engineerin... In this paper, an improved hybrid differential evolution-estimation of distribution algorithm (IHDE-EDA) is proposed for nonlinear programming (NLP) and mixed integer nonlinear programming (MINLP) models in engineering optimization fields. In order to improve the global searching ability and convergence speed, IHDE-EDA takes full advantage of differential information and global statistical information extracted respectively from differential evolution algorithm and annealing mechanism-embedded estimation of distribution algorithm. Moreover, the feasibility rules are used to handle constraints, which do not require additional parameters and can guide the population to the feasible region quickly. The effectiveness of hybridization mechanism of IHDE-EDA is first discussed, and then simulation and comparison based on three benchmark problems demonstrate the efficiency, accuracy and robustness of IHDE-EDA. Finally, optimization on an industrial-size scheduling of two-pipeline crude oil blending problem shows the practical applicability of IHDE-EDA. 展开更多
关键词 differential evolution estimation of distribution hybrid evolution mixed-coding feasibility rules
下载PDF
Application of complete ensemble intrinsic time-scale decomposition and least-square SVM optimized using hybrid DE and PSO to fault diagnosis of diesel engines 被引量:7
7
作者 Jun-hong ZHANG Yu LIU 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第2期272-286,共15页
Targeting the mode-mixing problem of intrinsic time-scale decomposition (ITD) and the parameter optimization problem of least-square support vector machine (LSSVM), we propose a novel approach based on complete en... Targeting the mode-mixing problem of intrinsic time-scale decomposition (ITD) and the parameter optimization problem of least-square support vector machine (LSSVM), we propose a novel approach based on complete ensemble intrinsic time-scale decomposition (CEITD) and LSSVM optimized by the hybrid differential evolution and particle swarm optimization (HDEPSO) algorithm for the identification of the fault in a diesel engine. The approach consists mainly of three stages. First, to solve the mode-mixing problem of ITD, a novel CEITD method is proposed. Then the CEITD method is used to decompose the nonstationary vibration signal into a set of stationary proper rotation components (PRCs) and a residual signal. Second, three typical types of time-frequency features, namely singular values, PRCs energy and energy entropy, and AR model parameters, are extracted from the first several PRCs and used as the fault feature vectors. Finally, a HDEPSO algorithm is proposed for the parameter optimization of LSSVM, and the fault diagnosis results can be obtained by inputting the fault feature vectors into the HDEPSO-LSSVM classifier. Simulation and experimental results demonstrate that the proposed fault diagnosis approach can overcome the mode-mixing problem of ITD and accurately identify the fault patterns of diesel engines. 展开更多
关键词 Diesel Fault diagnosis Complete ensemble intrinsic time-scale decomposition (CE1TD) l east square supportvector machine (LSSVM) Hybrid differential evolution and particle swarm optimization (HDEPSO)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部