期刊文献+
共找到126篇文章
< 1 2 7 >
每页显示 20 50 100
顾及上下文信息的混合广义高斯密度模型遥感影像分类方法研究 被引量:2
1
作者 徐宏根 马洪超 +1 位作者 宋妍 贾小霞 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2008年第9期959-962,972,共5页
提出了一种基于混合广义高斯密度模型(generalize Gaussian mixture model,GGMM),并顾及影像上下文信息的遥感影像分类方法。试验结果表明,该方法具有较强的鲁棒性,分类精度较传统的分类方法要好,在细节保持方面,较某些尺度上的面向对... 提出了一种基于混合广义高斯密度模型(generalize Gaussian mixture model,GGMM),并顾及影像上下文信息的遥感影像分类方法。试验结果表明,该方法具有较强的鲁棒性,分类精度较传统的分类方法要好,在细节保持方面,较某些尺度上的面向对象的分类方法要好。 展开更多
关键词 遥感影像分类 混合广义高斯密度模型 马尔可夫随机场模型
下载PDF
基于高斯混合模型的采煤工作面冲击危险性评价
2
作者 崔峰 李宜霏 +4 位作者 贾冲 陆长亮 何仕凤 张随林 田梦琪 《煤田地质与勘探》 EI CAS CSCD 北大核心 2024年第10期85-96,共12页
【目的】深入了解声发射或微震能量分布所蕴含的概率学信息,对于工作面回采过程中的冲击危险性评价具有重要意义。【方法】以陕西大佛寺煤矿4号煤层40111工作面作为工程背景,运用物理相似模拟实验、理论分析、现场监测等相关方法进行分... 【目的】深入了解声发射或微震能量分布所蕴含的概率学信息,对于工作面回采过程中的冲击危险性评价具有重要意义。【方法】以陕西大佛寺煤矿4号煤层40111工作面作为工程背景,运用物理相似模拟实验、理论分析、现场监测等相关方法进行分析,研究了声发射监测数据在回采过程中的演化规律,阐明了声发射能量概率分布呈现波动性的物理意义,提出了基于高斯混合模型(Gaussianminture model,GMM)及置信区间的冲击危险性评价指标模型,并由现场微震数据进行验证。【结果和结论】结果表明:回采过程中上覆岩层周期性垮落并伴随声发射能量的集中释放。总能量的概率密度函数呈现多自由度的非对称分布,通过对比残差平方和等多项拟合效果指标,确定高斯混合模型为最佳拟合模型。基于EM(expectation maximization)算法的GMM聚类分析,将声发射事件总能量分布划分为两类:高频低能型和低频高能型,其中低频高能型与冲击事件的突发性和高能量破坏特征一致。依据概率-能量梯度变化特征,对工作面开采过程中冲击危险性进行了评估。研究成果为采煤工作面冲击危险性评价提供了概率学上的创新思路,具有在冲击地压监测预警及后续防治中的潜在应用价值。 展开更多
关键词 高斯混合模型 概率密度分布法 聚类分析 冲击危险性评价 动力灾害预警
下载PDF
基于高斯混合模型的物流非高斯随机振动损伤分析
3
作者 郭涛 葛长风 +3 位作者 夏斯璇 殷诚 林康 钱静 《振动与冲击》 EI CSCD 北大核心 2024年第12期203-211,共9页
针对公路运输环境中的振动信号具有明显的非高斯性,提出一种非高斯随机振动疲劳损伤分析方法。为了描述振动信号的幅值概率密度分布,采用移动加速度均方根来代表该段信号的振动强度,并引入高斯混合模型对加速度均方根值进行描述。在此... 针对公路运输环境中的振动信号具有明显的非高斯性,提出一种非高斯随机振动疲劳损伤分析方法。为了描述振动信号的幅值概率密度分布,采用移动加速度均方根来代表该段信号的振动强度,并引入高斯混合模型对加速度均方根值进行描述。在此基础上结合Tovo-Benasciutti方法和Dirlik方法推导出非高斯宽带频域疲劳损伤计算方法。最后,以雨流计数法作为参考,对不同峭度的实测振动信号进行疲劳损伤分析,结果表明,与传统频域疲劳损伤计算方法相比较,提出的非高斯疲劳损伤方法具有更高的计算精度。该研究对于运输包装件的随机振动加速试验设计有实际意义。 展开更多
关键词 高斯随机振动 高斯混合模型 概率密度函数 运输包装
下载PDF
基于密度峰值聚类的高斯混合模型核电运行工况划分 被引量:1
4
作者 崔文浩 郑胜 +3 位作者 杨森权 杨珊珊 曾曙光 罗骁域 《科学技术与工程》 北大核心 2023年第20期8670-8676,共7页
核电厂运行数据记录了核电厂的运行状态,对核电数据进行处理分析从而完成准确的工况划分是实现核电厂运行状态监测的重要基础。为提高核电厂的运行工况划分准确性,提出了基于密度峰值聚类的高斯混合模型对核电厂的运行工况进行划分。首... 核电厂运行数据记录了核电厂的运行状态,对核电数据进行处理分析从而完成准确的工况划分是实现核电厂运行状态监测的重要基础。为提高核电厂的运行工况划分准确性,提出了基于密度峰值聚类的高斯混合模型对核电厂的运行工况进行划分。首先,采用主成分分析(principal component analysis,PCA)算法进行数据降维,然后利用密度峰值聚类算法中的决策图确定工况个数,最后利用高斯混合模型完成工况划分。基于真实的核电厂运行数据开展工况划分实验。实验结果表明:所提出的方法能合理有效地划分出核电运行工况,其三类工况的划分准确率分别达到了99.29%、100%、97.57%,且错误率仅为1.25%。 展开更多
关键词 核电厂运行数据 工况划分 密度峰值聚类 高斯混合模型 主成分分析(PCA)
下载PDF
改进高斯混合模型的激光点云数据分类 被引量:3
5
作者 张忠琼 赵颖 钱淑渠 《激光杂志》 CAS 北大核心 2023年第6期215-219,共5页
激光点云数据的无序性会影响激光场景识别和三维重建,导致激光点云数据分类误差大,精度低等问题,为此提出基于改进高斯混合模型的激光点云数据分类方法。首先采集激光点云数据,利用邻域密度算法对数据中的噪声进行分析和去除,然后采用... 激光点云数据的无序性会影响激光场景识别和三维重建,导致激光点云数据分类误差大,精度低等问题,为此提出基于改进高斯混合模型的激光点云数据分类方法。首先采集激光点云数据,利用邻域密度算法对数据中的噪声进行分析和去除,然后采用改进高斯混合模型获取数据点间距,将点云数据分类相应类别中,实现激光点云数据分类。实验结果证明,本方法可以有效去除激光点云数据中的孤立点,提高了激光点云数据分类精度,激光点云数据分类结果可满足激光三维重建要求。 展开更多
关键词 高斯混合模型 激光点云 数据分类 邻域密度
下载PDF
基于高斯混合模型的风电场群功率波动概率密度分布函数研究 被引量:43
6
作者 崔杨 杨海威 李鸿博 《电网技术》 EI CSCD 北大核心 2016年第4期1107-1112,共6页
如何描述风电功率波动的概率密度分布特性一直是风电联网运行分析领域的难点。在利用概率密度函数法分析风电功率波动特性的基础上,首先验证了采用多种单一分布函数模型拟合风电波动概率密度分布特性的效果较差,并根据列维定理揭示了风... 如何描述风电功率波动的概率密度分布特性一直是风电联网运行分析领域的难点。在利用概率密度函数法分析风电功率波动特性的基础上,首先验证了采用多种单一分布函数模型拟合风电波动概率密度分布特性的效果较差,并根据列维定理揭示了风电场群出力波动概率密度分布特性呈现多种分布的规律;在此基础上提出采用高斯混合模型替代单一分布函数模型来拟合风电波动概率密度分布特性的方法。仿真结果表明,高斯混合模型具有良好的拟合效果,适用于描述大型风电场群出力波动的概率密度分布特性。 展开更多
关键词 风电功率波动 概率密度分布 拟合效果 单一分布函数模型 高斯混合模型
下载PDF
混合高斯概率密度模型参数的期望最大化估计 被引量:21
7
作者 王平波 蔡志明 刘旺锁 《声学技术》 CSCD 北大核心 2007年第3期498-502,共5页
混合高斯模型是对非高斯数据进行概率密度拟合典型模型,其参数估计可以通过期望最大化(EM)迭代算法获得。多维混合高斯模型参数的EM估计因结构庞杂而难以求解,而对主动检测背景的统计特性拟合来说,一维的混合高斯模型一般即已足够。描... 混合高斯模型是对非高斯数据进行概率密度拟合典型模型,其参数估计可以通过期望最大化(EM)迭代算法获得。多维混合高斯模型参数的EM估计因结构庞杂而难以求解,而对主动检测背景的统计特性拟合来说,一维的混合高斯模型一般即已足够。描述了该情形下的混合高斯模型及其参数估计问题之后,导出了一种工程实用的、简化的EM迭代算法,并给出了可计算机编程实现的算法流程图。然后详细探讨了对EM估计精度与速度有着重要影响的参数初始化问题,给出了三种可选择的初值设置方案:高速度方案、高精度方案和二者的折衷方案,并分析了它们各自的适用场合。最后,结合一组数值仿真实例,演示了EM迭代算法的良好的混合高斯模型参数估计性能。 展开更多
关键词 混合高斯 概率密度模型 EM 最大似然估计
下载PDF
基于高斯混合模型的非高斯随机振动幅值概率密度函数 被引量:9
8
作者 程红伟 陶俊勇 +1 位作者 蒋瑜 陈循 《振动与冲击》 EI CSCD 北大核心 2014年第5期115-119,共5页
针对非高斯振动信号的幅值概率密度函数难以用数学模型表述的问题,提出了基于高斯混合模型的非高斯概率密度函数表示方法。首先,基于时域样本信号得到非高斯振动信号的高阶矩估计值。其次,基于高斯随机过程偶次高阶矩之间的定量关系,结... 针对非高斯振动信号的幅值概率密度函数难以用数学模型表述的问题,提出了基于高斯混合模型的非高斯概率密度函数表示方法。首先,基于时域样本信号得到非高斯振动信号的高阶矩估计值。其次,基于高斯随机过程偶次高阶矩之间的定量关系,结合二阶高斯混合模型建立方程组,求解得到混合模型中每个高斯分量的方差和权值。然后,将各高斯分量的权值和方差代入高斯混合模型,得到适用于对称非高斯振动信号的幅值概率密度函数。最后,通过仿真信号和实测振动信号,验证了该方法的有效性和适用性。 展开更多
关键词 高斯随机振动 高斯混合模型 概率密度函数(PDF) 高阶矩 PROBABILITY DENSITY function (PDF)
下载PDF
基于混合高斯密度模型和空间上下文信息的遥感影像变化检测方法及扩展 被引量:3
9
作者 宋妍 袁修孝 付迎春 《遥感学报》 EI CSCD 北大核心 2009年第1期117-128,共12页
在运用混合高斯密度模型对差分影像建模的基础上,分别采用顾及上下文信息的概率松弛迭代法和马尔可夫随机场模型法进行影像的变化检测。首先,提出一种运用遗传K均值算法与EM算法联合解算高斯混合密度模型参数的方法,该方法可以自动地解... 在运用混合高斯密度模型对差分影像建模的基础上,分别采用顾及上下文信息的概率松弛迭代法和马尔可夫随机场模型法进行影像的变化检测。首先,提出一种运用遗传K均值算法与EM算法联合解算高斯混合密度模型参数的方法,该方法可以自动地解算出模型的统计参数,结果与手工选择样本的解算结果完全一致。然后,比较概率松弛迭代法以及马尔可夫随机场模型法的影像变化检测效果,得出基于模拟退火法的马尔可夫随机场法效果较好的结论。最后,对传统的基于模拟退火法的马尔可夫随机场方法进行改进,提出了一种变权马尔可夫随机场方法,检测结果能更好地保持影像的结构性,并有效去除了孤立噪声。 展开更多
关键词 影像变化检测 混合高斯密度模型 遗传K均值算法 期望最大化算法 马尔可夫随机场模型
下载PDF
基于高斯混合模型和核密度估计的全身骨骼SPECT图像分割算法研究 被引量:4
10
作者 徐磊 孟庆乐 +2 位作者 杨瑞 田书畅 蒋红兵 《中国医疗设备》 2016年第2期48-51,47,共5页
目的提出一种基于高斯混合模型的骨扫描图像分割算法,可自动识别全身骨骼SPECT图像中的病变区域。方法首先对二维全身骨骼SPECT图像进行锐化、平滑、灰度变换等预处理;然后采用核密度估计方法拟合出预处理图像的像素概率密度函数曲线,... 目的提出一种基于高斯混合模型的骨扫描图像分割算法,可自动识别全身骨骼SPECT图像中的病变区域。方法首先对二维全身骨骼SPECT图像进行锐化、平滑、灰度变换等预处理;然后采用核密度估计方法拟合出预处理图像的像素概率密度函数曲线,并根据曲线的峰值点确定期望最大值(EM)算法的初始值;再应用高斯混合模型对图像进行分割;最后使用模板匹配算法排除误识别的区域。结果应用本研究提出的图像分割算法所得到的图像清晰度和对比度优于其他图像分割算法,且本研究提出的图像分割算法的相似性测度明显高于其他图像分割算法,平均耗时最短。结论基于高斯混合模型和核密度估计的全身骨骼SPECT图像分割算法是一种高效、实用的骨扫描图像分割算法。 展开更多
关键词 全身骨骼显像 高斯混合模型 密度估计 EM算法
下载PDF
融合密度峰值的高斯混合模型聚类算法 被引量:11
11
作者 陶志勇 刘晓芳 王和章 《计算机应用》 CSCD 北大核心 2018年第12期3433-3437,3443,共6页
针对高斯混合模型(GMM)聚类算法对初始值敏感且容易陷入局部极小值的问题,利用密度峰值(DP)算法全局搜索能力强的优势,对GMM算法的初始聚类中心进行优化,提出了一种融合DP的GMM聚类算法(DPGMMC)。首先,基于DP算法寻找聚类中心,得到混合... 针对高斯混合模型(GMM)聚类算法对初始值敏感且容易陷入局部极小值的问题,利用密度峰值(DP)算法全局搜索能力强的优势,对GMM算法的初始聚类中心进行优化,提出了一种融合DP的GMM聚类算法(DPGMMC)。首先,基于DP算法寻找聚类中心,得到混合模型的初始参数;其次,采用最大期望(EM)算法迭代估计混合模型的参数;最后,根据贝叶斯后验概率准则实现数据点的聚类。在Iris数据集下,DP-GMMC聚类准确率可达到96. 67%,与传统GMM算法相比提高了33. 6个百分点,解决了对初始聚类中心依赖的问题。实验结果表明,DP-GMMC对低维数据集有较好的聚类效果。 展开更多
关键词 聚类 高斯混合模型 最大期望算法 密度峰值
下载PDF
利用高斯混合模型实现概率密度函数逼近 被引量:16
12
作者 袁礼海 李钊 宋建社 《无线电通信技术》 2007年第2期20-22,共3页
针对图像的概率分布密度函数的不确定,利用有限高斯混合模型逼近图像的概率分布密度函数。理论上证明了有限高斯混合模型可以以任意精度正逼近实数上的非负黎曼可积函数,特别可以逼近任意的概率分布密度函数。实例表明有限高斯混合模型... 针对图像的概率分布密度函数的不确定,利用有限高斯混合模型逼近图像的概率分布密度函数。理论上证明了有限高斯混合模型可以以任意精度正逼近实数上的非负黎曼可积函数,特别可以逼近任意的概率分布密度函数。实例表明有限高斯混合模型逼近已知分布密度函数或未知分布密度函数时,具有逼近精度高等优点,为函数逼近提供了理论和技术支持。 展开更多
关键词 高斯混合模型 函数逼近 概率密度函数 高斯分布
下载PDF
基于beta回归的迎春5号杨树树干密度混合效应模型 被引量:1
13
作者 吴新华 苗铮 +1 位作者 郝元朔 董利虎 《北京林业大学学报》 CAS CSCD 北大核心 2023年第5期67-78,共12页
【目的】探究迎春5号杨树在树干纵向上的木材密度影响因子和变异规律,构建迎春5号杨树边材、心材、树皮和树干密度混合效应beta回归模型,为树干生物量预测和木材材性研究提供参考。【方法】以黑龙江省尚志市90株迎春5号杨树解析木数据... 【目的】探究迎春5号杨树在树干纵向上的木材密度影响因子和变异规律,构建迎春5号杨树边材、心材、树皮和树干密度混合效应beta回归模型,为树干生物量预测和木材材性研究提供参考。【方法】以黑龙江省尚志市90株迎春5号杨树解析木数据为基础,构建迎春5号杨树边材、心材、树皮和树干密度的混合效应beta回归模型。采用相关性分析和最优子集法筛选beta回归基础模型的变量;利用负二倍的对数似然值、赤池信息准则、贝叶斯信息准则、调整确定系数(R_a~2)、似然比检验对收敛模型进行拟合优度的评价,利用留一交叉验证法对模型进行检验,指标为平均绝对误差(MAE)和平均绝对百分比误差;结合两种抽样方式(方案Ⅰ:不限定相对高;方案Ⅱ:限定相对高在0.1以下)对模型进行校正。【结果】边材、心材、树皮和树干密度不仅受到相对高的影响,还分别与胸径平均生长量、年龄、胸径密切相关,基于林木因子建立的混合效应beta回归模型的R_a~2分别为0.53、0.52、0.52、0.63,MAE<0.05 g/cm~3,与基础模型相比均提高了预测精度。边材和心材密度从树干基部往上先减小后增大,在相对高0.2处有拐点;树皮密度从树干基部到树梢先增大后减小,在相对高0.6处有拐点;树干密度沿着树干向上逐渐增大。固定相对高时,边材、心材密度都与胸径平均生长量呈负相关,树皮、树干密度分别与年龄、胸径呈负相关。在不限定相对高的情况下,沿着树干随机抽取4个圆盘的密度测量值来校准模型得到稳定的预测精度;限定取样高度在相对高0.1(2.0 m)以下时,对边材、心材、树皮和树干分别抽取一个圆盘(对应高度为1.0、1.3、2.0、1.0 m)的密度测量值,得到与最优抽样组合相似的预测精度。相对高、胸径平均生长量、年龄和胸径是迎春5号杨树木材密度的显著影响因子。【结论】beta回归模型可对(0,1)区间的迎春5号杨树树干密度直接模拟,引入随机效应可提高模型的预测精度。边材、心材、树皮和树干密度在树干纵向上的变化规律不同,构建的混合效应beta回归模型可为迎春5号杨树树干生物量估算和木材性质研究奠定基础。 展开更多
关键词 迎春5号杨树 木材密度 beta回归 广义线性混合模型
下载PDF
基于统计感知策略的高斯混合模型求解方法 被引量:1
14
作者 陈佳琪 何玉林 +1 位作者 黄哲学 FOURNIER-VIGER Philippe 《数据采集与处理》 CSCD 北大核心 2023年第3期525-538,共14页
高斯混合模型(Gaussian mixture model,GMM)是一种经典的概率模型,常被用于无监督学习领域来确定无类别标记样本点的类别分布。作为求解GMM参数的重要技术,期望最大化(Expectation maximization,EM)算法通过计算GMM对应似然函数的最优... 高斯混合模型(Gaussian mixture model,GMM)是一种经典的概率模型,常被用于无监督学习领域来确定无类别标记样本点的类别分布。作为求解GMM参数的重要技术,期望最大化(Expectation maximization,EM)算法通过计算GMM对应似然函数的最优解确定基模型自身参数以及基模型的混合系数。利用EM算法求解GMM存在如下两个缺陷:EM算法易于陷入局部最优解以及EM算法确定GMM基模型相关参数的不稳定,尤其是针对多维随机变量。本文提出了一种基于统计感知(Statistical⁃aware,SA)策略的GMM求解方法——SA⁃GMM方法。该方法从估计给定数据集的未知概率密度函数入手,建立了核密度估计(Kernel density estimation,KDE)与GMM之间的关联。为避免KDE对“过平滑”窗口的选取,设计了同时最小化KDE与GMM之间的经验风险和KDE窗口结构风险的目标函数,进而确定了GMM的最优参数。在11个标准概率分布上的实验证明了SA⁃GMM方法的可行性、合理性和有效性,同时结果也表明SA⁃GMM能够获得显著优于基于EM算法的GMM及其变体的概率密度函数估计表现。 展开更多
关键词 高斯混合模型 概率密度函数估计 统计感知 经验风险 结构风险 粒子群优化
下载PDF
基于高斯混合密度模型的隐身目标RCS统计分析
15
作者 庄亚强 张晨新 +1 位作者 张小宽 周超 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2014年第2期37-40,共4页
为克服传统RCS起伏统计模型描述隐身目标起伏特性的不足,提出了一种将高斯混合密度模型(GMDM)应用于RCS统计分析的建模方法。根据典型隐身目标的仿真数据,分别建立了该目标在不同方位角范围内的2阶GMDM和χ2分布模型。拟合结果表明2阶G... 为克服传统RCS起伏统计模型描述隐身目标起伏特性的不足,提出了一种将高斯混合密度模型(GMDM)应用于RCS统计分析的建模方法。根据典型隐身目标的仿真数据,分别建立了该目标在不同方位角范围内的2阶GMDM和χ2分布模型。拟合结果表明2阶GMDM在前侧向、正侧向和后侧向拟合误差分别为4.74%、12.34%和1.01%,而χ2模型的拟合误差分别为44.5%、18.65%和13.21%。同时,当拟合阶数超过4阶时,GMDM的拟合误差将稳定在5%以下,能够满足雷达目标仿真的精度需求。 展开更多
关键词 雷达散射截面 高斯混合密度模型 统计分析 拟合
下载PDF
基于主成分分析和深度自编码高斯混合模型的无监督异常数据检测方法研究 被引量:2
16
作者 刘翔宇 朱诗兵 杨帆 《现代电子技术》 2023年第3期75-80,共6页
在异常数据检测中,由于数据量过大和数据特征维度过高,往往会导致数据标定困难、数据冗余、算法效率降低等。针对以上问题,将主成分分析(PCA)特征选择算法与深度自编码高斯混合模型(DAGMM)相结合,提出一种新的无监督异常数据检测方法PCA... 在异常数据检测中,由于数据量过大和数据特征维度过高,往往会导致数据标定困难、数据冗余、算法效率降低等。针对以上问题,将主成分分析(PCA)特征选择算法与深度自编码高斯混合模型(DAGMM)相结合,提出一种新的无监督异常数据检测方法PCA-DAGMM。该方法首先利用PCA特征选择算法对数据进行预处理,去除对分类效果增益较小的冗余数据,降低运算成本;然后将特征选择后的数据输入到DAGMM模型中进行训练。基于kddcup99数据集和CIC-IDS-2017数据集进行实验,并与多种特征选择算法进行对比,实验结果表明,PCA-DAGMM方法可以有效优化分类器性能,提高分类器训练效率,适用于解决网络流量异常检测问题,F1指数在kddcup99数据集和CIC-IDS-2017数据集上比DAGMM模型分别提高了4.37%和1.06%,训练时间减少了14.43%和8%。 展开更多
关键词 无监督异常数据检测 主成分分析 特征选择 深度自编码高斯混合模型 密度估计 联合训练
下载PDF
基于改进混合高斯模型的人群密度估计方法 被引量:4
17
作者 沈娜 黎宁 常庆龙 《计算机与数字工程》 2012年第7期108-111,共4页
人群密度估计对于公共安全管理至关重要。针对视频监控系统下的人群密度估计问题,提出了一种基于改进混合高斯模型和像素统计的人群密度估计方法。通过计算图像的均值和偏差均值,提取高斯模型特征,在恒定的模型更新速率指导下,重建混合... 人群密度估计对于公共安全管理至关重要。针对视频监控系统下的人群密度估计问题,提出了一种基于改进混合高斯模型和像素统计的人群密度估计方法。通过计算图像的均值和偏差均值,提取高斯模型特征,在恒定的模型更新速率指导下,重建混合高斯背景图,从而获取人群二值图,最后,利用像素统计的方法实现人群密度快速估计。实验结果表明,较传统方法,该方法可以更准确有效地估计人群密度。 展开更多
关键词 视频监控 人群密度估计 混合高斯模型 像素统计
下载PDF
基于密度峰值聚类的高斯混合模型算法 被引量:11
18
作者 王卫东 徐金慧 +1 位作者 张志峰 杨习贝 《计算机科学》 CSCD 北大核心 2021年第10期191-196,共6页
由于存在大量服从高斯分布的样本数据,采用高斯混合模型(Gaussian Mixture Models,GMM)对这些样本数据进行聚类分析,可以得到比较准确的聚类结果。通常采用EM算法(Expectation Maximization Algorithm)对GMM的参数进行迭代式估计。但传... 由于存在大量服从高斯分布的样本数据,采用高斯混合模型(Gaussian Mixture Models,GMM)对这些样本数据进行聚类分析,可以得到比较准确的聚类结果。通常采用EM算法(Expectation Maximization Algorithm)对GMM的参数进行迭代式估计。但传统EM算法存在两点不足:对初始聚类中心的取值比较敏感;迭代式参数估计的迭代终止条件是相邻两次估计参数的距离小于给定的阈值,这不能保证算法收敛于参数的最优值。为了弥补上述不足,提出采用密度峰值聚类(Density Peaks Clustering,DPC)来初始化EM算法,以提高算法的鲁棒性,采用相对熵作为EM算法的迭代终止条件,实现对GMM算法参数值的优化选取。在人工数据集及UCI数据集上的对比实验表明,所提算法不但提高了EM算法的鲁棒性,而且其聚类结果优于传统算法。尤其在服从高斯分布的数据集上的实验结果显示,所提算法大幅提高了聚类精度。 展开更多
关键词 密度峰值聚类 相对熵 高斯混合模型 EM算法 聚类算法
下载PDF
基于改进混合高斯模型的人群密度估计研究 被引量:6
19
作者 安曦宁 《电子科技》 2017年第5期180-183,共4页
针对视频监控中人群密度估计的不足,提出一种基于改进混合高斯模型和灰度共生矩阵的人群密度估计方法。在背景建模的初始阶段运用差分法分割出运动区域,将不同的更新率赋予已经划分好的背景区域和运动区域,从而克服漏检和误检。并使用... 针对视频监控中人群密度估计的不足,提出一种基于改进混合高斯模型和灰度共生矩阵的人群密度估计方法。在背景建模的初始阶段运用差分法分割出运动区域,将不同的更新率赋予已经划分好的背景区域和运动区域,从而克服漏检和误检。并使用基于灰度共生矩阵的纹理方法提取人群密度特征,进而使用支持向量机实现人群密度分类。实验结果表明,该方法提高了视频监控中人群密度估计的准确率。 展开更多
关键词 人群密度估计 混合高斯模型 灰度共生矩阵 支持向量机
下载PDF
基于混合高斯模型与核密度估计的目标检测
20
作者 吕游 任政 +1 位作者 李向阳 方向忠 《信息技术》 2012年第10期147-150,共4页
背景建模与目标检测是视频跟踪的重要步骤和基础,非参数核密度估计与混合高斯模型是背景建模与目标检测的经典方法。文中首先介绍了高斯模型与核密度估计的基本原理及各自的优缺点,然后提出了一种核密度-混合高斯模型级联算法,利用核密... 背景建模与目标检测是视频跟踪的重要步骤和基础,非参数核密度估计与混合高斯模型是背景建模与目标检测的经典方法。文中首先介绍了高斯模型与核密度估计的基本原理及各自的优缺点,然后提出了一种核密度-混合高斯模型级联算法,利用核密度估计快速分割前景与背景区域,再由混合高斯模型对于无法精确建模的区域进行二次判定,有效综合了二者各自的优点。仿真结果表明,该算法具有良好的实时性和鲁棒性。 展开更多
关键词 混合高斯模型 密度估计 背景建模 前景目标检测
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部