The Effects of pressure stress work and viscous dissipation in mixed convection flow along a vertical fiat plate have been investigated. The results are obtained by transforming the governing system of boundary layer ...The Effects of pressure stress work and viscous dissipation in mixed convection flow along a vertical fiat plate have been investigated. The results are obtained by transforming the governing system of boundary layer equations into a system of non-dimensional equations and by applying implicit finite difference method together with Newton's linearization approximation. Numerical results for different values of pressure stress work parameter, viscous dissipation parameter and Prandtl number have been obtained. The velocity profiles, temperature distributions, skin friction co-efficient and the rate of heat transfer have been presented graphically for the effects of the aforementioned parameters.展开更多
The present study is carried out to see the thermal-diffusion(Dufour) and diffusion-thermo(Soret) effects on the mixed convection boundary layer flow of viscoelastic nanofluid flow over a vertical stretching surface i...The present study is carried out to see the thermal-diffusion(Dufour) and diffusion-thermo(Soret) effects on the mixed convection boundary layer flow of viscoelastic nanofluid flow over a vertical stretching surface in a porous medium. Optimal homotopy analysis method(OHAM) is best candidate to handle highly nonlinear system of differential equations obtained from boundary layer partial differential equations via appropriate transformations. Graphical illustrations depicting different physical arising parameters against velocity, temperature and concentration distributions with required discussion have also been added. Numerically calculated values of skin friction coefficient, local Nusselt and Sherwood numbers are given in the form of table and well argued. It is found that nanofluid velocity increases with increase in mixed convective and viscoelastic parameters but it decreases with the increasing values of porosity parameter. Also, it is observed that Dufour number has opposite behavior on temperature and concentration profiles.展开更多
This communication addresses the impact of heat source/sink along with mixed convection on oblique flow of Casson fluid having variable viscosity. Similarity analysis has been utilized to model governing equations, wh...This communication addresses the impact of heat source/sink along with mixed convection on oblique flow of Casson fluid having variable viscosity. Similarity analysis has been utilized to model governing equations, which are simplified to set of nonlinear differential equations. Computational procedure of shooting algorithm along with 4 th order Range-Kutta-Fehlberg scheme is opted to attain the velocity and temperature distributions. Impact of imperative parameters on Casson fluid flow, temperature, significant physical quantities such as skin friction, local heat flux and streamlines are displayed via graphs.展开更多
文摘The Effects of pressure stress work and viscous dissipation in mixed convection flow along a vertical fiat plate have been investigated. The results are obtained by transforming the governing system of boundary layer equations into a system of non-dimensional equations and by applying implicit finite difference method together with Newton's linearization approximation. Numerical results for different values of pressure stress work parameter, viscous dissipation parameter and Prandtl number have been obtained. The velocity profiles, temperature distributions, skin friction co-efficient and the rate of heat transfer have been presented graphically for the effects of the aforementioned parameters.
文摘The present study is carried out to see the thermal-diffusion(Dufour) and diffusion-thermo(Soret) effects on the mixed convection boundary layer flow of viscoelastic nanofluid flow over a vertical stretching surface in a porous medium. Optimal homotopy analysis method(OHAM) is best candidate to handle highly nonlinear system of differential equations obtained from boundary layer partial differential equations via appropriate transformations. Graphical illustrations depicting different physical arising parameters against velocity, temperature and concentration distributions with required discussion have also been added. Numerically calculated values of skin friction coefficient, local Nusselt and Sherwood numbers are given in the form of table and well argued. It is found that nanofluid velocity increases with increase in mixed convective and viscoelastic parameters but it decreases with the increasing values of porosity parameter. Also, it is observed that Dufour number has opposite behavior on temperature and concentration profiles.
文摘This communication addresses the impact of heat source/sink along with mixed convection on oblique flow of Casson fluid having variable viscosity. Similarity analysis has been utilized to model governing equations, which are simplified to set of nonlinear differential equations. Computational procedure of shooting algorithm along with 4 th order Range-Kutta-Fehlberg scheme is opted to attain the velocity and temperature distributions. Impact of imperative parameters on Casson fluid flow, temperature, significant physical quantities such as skin friction, local heat flux and streamlines are displayed via graphs.