Polymerization of mixed alpha-olefins originating from the Fischer-Tropsch synthesis catalyzed by theBu)_3/[Me_2NHPh]^+[B(C_6F_5)_4]^-,was studied.The effects of the Zr/olefin mole ratio,Al/Zr mole ratio,reaction temp...Polymerization of mixed alpha-olefins originating from the Fischer-Tropsch synthesis catalyzed by theBu)_3/[Me_2NHPh]^+[B(C_6F_5)_4]^-,was studied.The effects of the Zr/olefin mole ratio,Al/Zr mole ratio,reaction temperature,and reaction time on the viscosity and molecular weight of the product were investigated.The conversion under optimized conditions reached 97.3%.The product structure was characterized by ^(13)C NMR spectrometry and ~1H NMR spectrometry,and the conversion of olefins with different carbon numbers under different conditions was determined by GC analysis.The polymer obtained under optimized conditions has a high viscosity index of 262 with a narrow molecular weight distribution of 1.95,which is a desired component for lubricating base oil.展开更多
The mixing enthalpies and structural order in liquid Mg−Si system were investigated via ab-initio molecular dynamics at 1773 K.By calculating the transferred charges and electron density differences,the dominance of S...The mixing enthalpies and structural order in liquid Mg−Si system were investigated via ab-initio molecular dynamics at 1773 K.By calculating the transferred charges and electron density differences,the dominance of Si−Si interactions in the chemical environments around Si was demonstrated,which determined that the mixing enthalpy reached the minimum on Mg-rich side.In terms of Honeycutt and Anderson(HA)bond pairs based on the partial pair correlation functions,the attraction between Si−Si pairs and Mg atoms was revealed,and the evolution of structural order with Si content was characterized as a process of constituting frame structures by Si−Si pairs that dispersed Mg atoms.Focusing on tetrahedral order of local Si-configurations,a correlation between the mixing enthalpy and structural order was uncovered ultimately,which provided a new perspective combining the energetics with geometry to understand the liquid Mg−Si binary system.展开更多
In this paper,we consider a cognitive radio system with energy harvesting,in which the secondary user operates in a saving-sensing-transmitting(SST) fashion.We investigate the tradeoff between energy harvesting,channe...In this paper,we consider a cognitive radio system with energy harvesting,in which the secondary user operates in a saving-sensing-transmitting(SST) fashion.We investigate the tradeoff between energy harvesting,channel sensing and data transmission and focus on the optimal SST structure to maximize the SU's expected achievable throughput.We consider imperfect knowledge of energy harvesting rate,which cannot be exactly known and only its statistical information is available.By formulating the problem of expected achievable throughput optimization as a mixed-integer non-linear programming one,we derive the optimal saveratio and number of sensed channels with indepth analysis.Simulation results show that the optimal SST structure outperforms random one and performance gain can be enhanced by increasing the SU's energy harvesting rate.展开更多
The current steel-concrete composite floors design might be susceptible to the resonance phenomenon, causing undesirable vibrations in the frequency range that is the most noticeable to humans, i.e., 4 Hz to 8 Hz. Thi...The current steel-concrete composite floors design might be susceptible to the resonance phenomenon, causing undesirable vibrations in the frequency range that is the most noticeable to humans, i.e., 4 Hz to 8 Hz. This way, the main objective of this work is to investigate the dynamic structural behaviour of a steel-concrete composite multi-storey building when subjected to human rhythmic activities (aerobics). The studied structural model represents a typical interior floor bay of a commercial building used for gym and is composed by three floor levels spanning 20 m by 20 m, with a total area of 3×400 m2. An extensive parametric study was developed aiming to obtain the peak accelerations, RMS (root mean square) accelerations and VDV (vibration dose value) values, based on two different mathematical formulations. The human comfort of the building was analysed and the vibration transmissibility related to the steel columns was verified. Based on the found results, the investigated structural model presented high vibration levels that compromise the human comfort.展开更多
Confinement is an effective method in order to increase concrete strength and its ductility capacity. To improve the structural properties of lightweight concrete, Fiber Reinforced Polymer (FRP) can be used to confi...Confinement is an effective method in order to increase concrete strength and its ductility capacity. To improve the structural properties of lightweight concrete, Fiber Reinforced Polymer (FRP) can be used to confine the concrete. Effect of Fiber Reinforced Polymer on confined lightweight concrete elements is one of the most important research fields. It is generally accepted that the strength and stiffness of confined concrete is higher than unconfined one. In this research, behavior of confined and unconfined concrete specimens under uniaxial loading has been studied. In order to decrease stress concentration corners of specimens were chamfered to a radius of 5 to 25 mm. The Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) were used to confine lightweight concrete specimens. The stress-strain curve of specimens is compared.展开更多
We present a novel, low-cost approach to fabricate flexible piezoelectric nano- generators (NGs) consisting of ZnO nanowires (NWs) on carbon fibers and foldable Au-coated ZnO NWs on paper. By using such designed s...We present a novel, low-cost approach to fabricate flexible piezoelectric nano- generators (NGs) consisting of ZnO nanowires (NWs) on carbon fibers and foldable Au-coated ZnO NWs on paper. By using such designed structure of the NGs, the radial ZnO NWs on a cylindrical fiber can be utilized fully and the electrical output of the NG is improved. The electrical output behavior of the NGs can be optionally controlled by increasing the fiber number, adjusting the strain rate and connection modes. For the single-fiber based NGs, the output voltage is 17 mV and the current density is about 0.09 μA·cm^-2, and the electrical output is enhanced greatly compared to that of previous similar micro-fiber based NGs. Compared with the single-fiber based NGs, the output current of the multi-fiber based NGs made of 200 carbon fibers increased 100-fold. An output voltage of 18 mV and current of 35 nA are generated from the multi-fiber based NGs. The electrical energy generated by the NGs is enough to power a practical device. The developed novel NGs can be used for smart textile structures, wearable and self-powered nanodevices.展开更多
In this paper,a brief review of the history of topological insulators is given.After that,electronic transport experiments in topological insulator-superconductor hybrid structures,including experimental methods,physi...In this paper,a brief review of the history of topological insulators is given.After that,electronic transport experiments in topological insulator-superconductor hybrid structures,including experimental methods,physical properties and seemingly contradictory observations are discussed.Additionally,some new topological insulator hybrid structures are proposed.展开更多
Traditional reliability analysis requires probability distributions of all the uncertain parameters.However,in many practical applications,the variation bounds can be only determined for the parameters with limited in...Traditional reliability analysis requires probability distributions of all the uncertain parameters.However,in many practical applications,the variation bounds can be only determined for the parameters with limited information.A complex hybrid reliability problem then will be caused when the random and interval variables coexist in a same structure.In this paper,by introducing the response surface technique,we develop a new hybrid reliability method to efficiently compute the interval of the failure probability of the structure due to the probability-interval hybrid uncertainty.The present method consists of a sequence of iterations.At each step,a response surface model is constructed for the limit-state function by using a quadratic polynomial and a modified axial experimental design method.An approximate hybrid reliability problem is created based on the response surface model,which is subsequently solved by an efficient decoupling approach.An updating strategy is suggested to improve the quality of the response surface and whereby ensure the reliability analysis precision.A computational procedure is then summarized for the whole iterations.Four numerical examples and also a practical application are provided to demonstrate the effectiveness of the present method.展开更多
Light trapping based on the localized surface-plasmon resonance(LSPR)effect of metallic nanostructures is a promising strategy to improve the device performance of organic solar cells(OSCs).We review recent advances i...Light trapping based on the localized surface-plasmon resonance(LSPR)effect of metallic nanostructures is a promising strategy to improve the device performance of organic solar cells(OSCs).We review recent advances in plasmonic-enhanced OPVs with solution-processed metallic nanoparticles(NPs).The different types of metallic NPs(sizes,shapes,and hybrids),incorporation positions,and NPs with tunable resonance wavelengths toward broadband enhancement are systematically summarized to give a guideline for the realization of highly efficient plasmonic photovoltaics.展开更多
For symbolic reachability analysis of rectangular hybrid systems, the basic issue is finding a formal structure to represent and manipulate its infinite state spaces. Firstly, this structure must be closed to the reac...For symbolic reachability analysis of rectangular hybrid systems, the basic issue is finding a formal structure to represent and manipulate its infinite state spaces. Firstly, this structure must be closed to the reachability operation which means that reachable states from states expressed by this structure can be presented by it too. Secondly, the operation of finding reachable states with this structure should take as less computation as possible. To this end, a constraint system called rectangular zone is formalized, which is a conjunction of fixed amount of inequalities that compare fixed types of linear expressions with two variables to rational numbers. It is proved that the rectangular zone is closed to those reachability operations-intersection, elapsing of time and edge transition. Since the number of inequalities and the linear expression of each inequality is fixed in rectangular zones, so to obtain reachable rectangular zones, it just needs to change the rational numbers to which these linear expressions need to compare. To represent rectangular zones and unions of rectangular zones, a data structure called three dimensional constraint matrix(TDCM) and a BDD-like structure rectangular hybrid diagram(RHD) are introduced.展开更多
文摘Polymerization of mixed alpha-olefins originating from the Fischer-Tropsch synthesis catalyzed by theBu)_3/[Me_2NHPh]^+[B(C_6F_5)_4]^-,was studied.The effects of the Zr/olefin mole ratio,Al/Zr mole ratio,reaction temperature,and reaction time on the viscosity and molecular weight of the product were investigated.The conversion under optimized conditions reached 97.3%.The product structure was characterized by ^(13)C NMR spectrometry and ~1H NMR spectrometry,and the conversion of olefins with different carbon numbers under different conditions was determined by GC analysis.The polymer obtained under optimized conditions has a high viscosity index of 262 with a narrow molecular weight distribution of 1.95,which is a desired component for lubricating base oil.
基金The authors are grateful for the financial supports from the National Key Research and Development Program of China(2016YFB0701202)the National Natural Science Foundation of China(51901117,51801116,51804190,and 11804179)the Shandong Provincial Key Research and Development Plan,China(2019GGX102047).
文摘The mixing enthalpies and structural order in liquid Mg−Si system were investigated via ab-initio molecular dynamics at 1773 K.By calculating the transferred charges and electron density differences,the dominance of Si−Si interactions in the chemical environments around Si was demonstrated,which determined that the mixing enthalpy reached the minimum on Mg-rich side.In terms of Honeycutt and Anderson(HA)bond pairs based on the partial pair correlation functions,the attraction between Si−Si pairs and Mg atoms was revealed,and the evolution of structural order with Si content was characterized as a process of constituting frame structures by Si−Si pairs that dispersed Mg atoms.Focusing on tetrahedral order of local Si-configurations,a correlation between the mixing enthalpy and structural order was uncovered ultimately,which provided a new perspective combining the energetics with geometry to understand the liquid Mg−Si binary system.
基金supported by National Nature Science Foundation of China(NO.61372109)
文摘In this paper,we consider a cognitive radio system with energy harvesting,in which the secondary user operates in a saving-sensing-transmitting(SST) fashion.We investigate the tradeoff between energy harvesting,channel sensing and data transmission and focus on the optimal SST structure to maximize the SU's expected achievable throughput.We consider imperfect knowledge of energy harvesting rate,which cannot be exactly known and only its statistical information is available.By formulating the problem of expected achievable throughput optimization as a mixed-integer non-linear programming one,we derive the optimal saveratio and number of sensed channels with indepth analysis.Simulation results show that the optimal SST structure outperforms random one and performance gain can be enhanced by increasing the SU's energy harvesting rate.
文摘The current steel-concrete composite floors design might be susceptible to the resonance phenomenon, causing undesirable vibrations in the frequency range that is the most noticeable to humans, i.e., 4 Hz to 8 Hz. This way, the main objective of this work is to investigate the dynamic structural behaviour of a steel-concrete composite multi-storey building when subjected to human rhythmic activities (aerobics). The studied structural model represents a typical interior floor bay of a commercial building used for gym and is composed by three floor levels spanning 20 m by 20 m, with a total area of 3×400 m2. An extensive parametric study was developed aiming to obtain the peak accelerations, RMS (root mean square) accelerations and VDV (vibration dose value) values, based on two different mathematical formulations. The human comfort of the building was analysed and the vibration transmissibility related to the steel columns was verified. Based on the found results, the investigated structural model presented high vibration levels that compromise the human comfort.
文摘Confinement is an effective method in order to increase concrete strength and its ductility capacity. To improve the structural properties of lightweight concrete, Fiber Reinforced Polymer (FRP) can be used to confine the concrete. Effect of Fiber Reinforced Polymer on confined lightweight concrete elements is one of the most important research fields. It is generally accepted that the strength and stiffness of confined concrete is higher than unconfined one. In this research, behavior of confined and unconfined concrete specimens under uniaxial loading has been studied. In order to decrease stress concentration corners of specimens were chamfered to a radius of 5 to 25 mm. The Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) were used to confine lightweight concrete specimens. The stress-strain curve of specimens is compared.
基金AcknowledgementsThis work was supported by the National Major Research Program of China (No. 2013CB932602),the Major Project of International Cooperation and Exchanges (No. 2012DFA50990), the National Natural Science Foundation of China (NSFC) (Nos. 51172022, 51232001, and 51372020), the Fundamental Research Funds for Central Universities, the Program for New Century Excellent Talents in University, Beijing Higher Education Young Elite Teacher Project, the Programme of Introducing Talents of Discipline to Universities, and Program for Changjiang Scholars and Innovative Research Teams in University.
文摘We present a novel, low-cost approach to fabricate flexible piezoelectric nano- generators (NGs) consisting of ZnO nanowires (NWs) on carbon fibers and foldable Au-coated ZnO NWs on paper. By using such designed structure of the NGs, the radial ZnO NWs on a cylindrical fiber can be utilized fully and the electrical output of the NG is improved. The electrical output behavior of the NGs can be optionally controlled by increasing the fiber number, adjusting the strain rate and connection modes. For the single-fiber based NGs, the output voltage is 17 mV and the current density is about 0.09 μA·cm^-2, and the electrical output is enhanced greatly compared to that of previous similar micro-fiber based NGs. Compared with the single-fiber based NGs, the output current of the multi-fiber based NGs made of 200 carbon fibers increased 100-fold. An output voltage of 18 mV and current of 35 nA are generated from the multi-fiber based NGs. The electrical energy generated by the NGs is enough to power a practical device. The developed novel NGs can be used for smart textile structures, wearable and self-powered nanodevices.
基金supported by the National Basic Research Program of China(Grant No.2012CB921300)the National Natural Science Foundation of China(Grant No.11174007)the Penn State MRSEC(Grant No. DMR-0820404)
文摘In this paper,a brief review of the history of topological insulators is given.After that,electronic transport experiments in topological insulator-superconductor hybrid structures,including experimental methods,physical properties and seemingly contradictory observations are discussed.Additionally,some new topological insulator hybrid structures are proposed.
基金supported by the National Science Foundation for Excellent Young Scholars(Grant No.51222502)the Key Project of Chinese National Programs for Fundamental Research and Development(Grant No.2010CB832700)+1 种基金the National Natural Science Foundation of China(Grant No.11172096)the Key Program of the National Natural Science Foundation of China(Grant No.11232004)
文摘Traditional reliability analysis requires probability distributions of all the uncertain parameters.However,in many practical applications,the variation bounds can be only determined for the parameters with limited information.A complex hybrid reliability problem then will be caused when the random and interval variables coexist in a same structure.In this paper,by introducing the response surface technique,we develop a new hybrid reliability method to efficiently compute the interval of the failure probability of the structure due to the probability-interval hybrid uncertainty.The present method consists of a sequence of iterations.At each step,a response surface model is constructed for the limit-state function by using a quadratic polynomial and a modified axial experimental design method.An approximate hybrid reliability problem is created based on the response surface model,which is subsequently solved by an efficient decoupling approach.An updating strategy is suggested to improve the quality of the response surface and whereby ensure the reliability analysis precision.A computational procedure is then summarized for the whole iterations.Four numerical examples and also a practical application are provided to demonstrate the effectiveness of the present method.
基金supported by the National Basic Research Program of China(2014CB643503)the National Natural Science Foundation of China(91233114 and 51261130582)
文摘Light trapping based on the localized surface-plasmon resonance(LSPR)effect of metallic nanostructures is a promising strategy to improve the device performance of organic solar cells(OSCs).We review recent advances in plasmonic-enhanced OPVs with solution-processed metallic nanoparticles(NPs).The different types of metallic NPs(sizes,shapes,and hybrids),incorporation positions,and NPs with tunable resonance wavelengths toward broadband enhancement are systematically summarized to give a guideline for the realization of highly efficient plasmonic photovoltaics.
基金supported by the National Natural Science Foundation of China(Grant Nos.61373043&61003079)the Fundamental Research Funds for the Central Universities(Grant No.JB140316)
文摘For symbolic reachability analysis of rectangular hybrid systems, the basic issue is finding a formal structure to represent and manipulate its infinite state spaces. Firstly, this structure must be closed to the reachability operation which means that reachable states from states expressed by this structure can be presented by it too. Secondly, the operation of finding reachable states with this structure should take as less computation as possible. To this end, a constraint system called rectangular zone is formalized, which is a conjunction of fixed amount of inequalities that compare fixed types of linear expressions with two variables to rational numbers. It is proved that the rectangular zone is closed to those reachability operations-intersection, elapsing of time and edge transition. Since the number of inequalities and the linear expression of each inequality is fixed in rectangular zones, so to obtain reachable rectangular zones, it just needs to change the rational numbers to which these linear expressions need to compare. To represent rectangular zones and unions of rectangular zones, a data structure called three dimensional constraint matrix(TDCM) and a BDD-like structure rectangular hybrid diagram(RHD) are introduced.