A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward contr...A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward controller is a novel input rate-dependent neural network hysteresis inverse model,while the feedback controller is a proportion integration differentiation(PID)controller.In the proposed inverse model,an input ratedependent auxiliary inverse operator(RAIO)and output of the hysteresis construct the expanded input space(EIS)of the inverse model which transforms the hysteresis inverse with multi-valued mapping into single-valued mapping,and the wiping-out,rate-dependent and continuous properties of the RAIO are analyzed in theories.Based on the EIS method,a hysteresis neural network inverse model,namely the dynamic back propagation neural network(DBPNN)model,is established.Moreover,a hybrid compensation scheme for the PEAs is designed to compensate for the hysteresis.Finally,the proposed method,the conventional PID controller and the hybrid controller with the modified input rate-dependent Prandtl-Ishlinskii(MRPI)model are all applied in the experimental platform.Experimental results show that the proposed method has obvious superiorities in the performance of the system.展开更多
Based on the principle of chemical engineering in the multisubject field—drug delivery, the release kinetics of the slab monolithic matrix with an initially linear concentration distribution is studied in this paper....Based on the principle of chemical engineering in the multisubject field—drug delivery, the release kinetics of the slab monolithic matrix with an initially linear concentration distribution is studied in this paper. It can be used to describe the later stage when drug loading is above its solubility limit. A comprehensive model is proposed and the generalized solutions are acquired by Laplace transformation, from which a special case, i.e. a perfect sink has been deduced. According to the derived equations, the concentration profiles in the matrix has been computed and illustrated and the effect of volume of extraction medium on release has been investigated.展开更多
The leaching kinetics of Sb and Fe from antimony-bearing complex sulfides ore was investigated in HCl solution by oxidation?leaching with ozone.The effects of temperature,HCl concentration,stirring speed and particle ...The leaching kinetics of Sb and Fe from antimony-bearing complex sulfides ore was investigated in HCl solution by oxidation?leaching with ozone.The effects of temperature,HCl concentration,stirring speed and particle size on the process were explored.It is found that the recoveries of Sb and Fe reach86.1%and28.8%,respectively,when the reaction conditions are4.0mol/L HCl,900r/min stirring speed at85°C with<0.074mm particle size after50min leaching.XRD analysis indicates that no new solid product forms in the leaching residue and the leaching process can be described by shrinking core model.The leaching of Sb corresponds to diffusion-controlled model at low temperature(15?45°C)and mixed-controlled model at high temperature(45?85°C),and the apparent activation energies are6.91and17.93kJ/mol,respectively.The leaching of Fe corresponds to diffusion-controlled model,and the apparent activation energy is1.99kJ/mol.Three semi-empirical rate equations are obtained to describe the leaching process.展开更多
A fatigue damage model based on thermodynamics was deduced for asphalt mixtures under controlled-stress and controlled-strain modes. By employing modulus of resilience as the damage hardening variable, a damage variab...A fatigue damage model based on thermodynamics was deduced for asphalt mixtures under controlled-stress and controlled-strain modes. By employing modulus of resilience as the damage hardening variable, a damage variable related with dynamic modulus was extracted as the evaluation index. Then, the damage evolution law under two control modes was proposed, and it has a similar form to the Chaboche fatigue model with a nonnegative material parameter m related to its loading level. Experimental data of four loading levels were employed to calibrate the model and identify the parameter in both control modes. It is found that the parameter m shows an exponential relationship with its loading level. Besides, the difference of damage evolution under two control modes was explained by the law. The damage evolves from fast to slow under a controlled-strain mode. However, under a controlled-stress mode, the evolution rate is just the opposite. By using the damage equivalence principle to calculate the equivalent cycle numbers, the deduced model also interprets the difference of damage evolution under two control modes on the condition of multilevel loading. Under a controlled-strain mode, a loading sequence from a low level to a high level accelerates damage evolution. An inverse order under the controlled-stress mode can prolong fatigue life.展开更多
The hysteresis characteristic is the major deficiency in the positioning control of magnetic shape memory alloy actuator. A Prandtl-Ishlinskii model was developed to characterize the hysteresis of magnetic shape memor...The hysteresis characteristic is the major deficiency in the positioning control of magnetic shape memory alloy actuator. A Prandtl-Ishlinskii model was developed to characterize the hysteresis of magnetic shape memory alloy actuator. Based on the proposed Prandtl-Ishlinskii model, the inverse Prandtl-Ishlinskii model was established as a feedforward controller to compensate the hysteresis of the magnetic shape memory alloy actuator. For further improving of the positioning precision of the magnetic shape memory alloy actuator, a hybrid control method with hysteresis nonlinear model in feedforward loop was proposed. The control method is separated into two parts: a feedforward loop with inverse Prandtl-Ishlinskii model and a feedback loop with neural network controller. To validate the validity of the proposed control method, a series of simulations and experiments were researched. The simulation and experimental results demonstrate that the maximum error rate of open loop controller based on inverse PI model is 1.72%, the maximum error rate of the hybrid controller based on inverse PI model is 1.37%.展开更多
A new semi-active suspension control strategy through mixed H2/H∞ robust technique was developed due to its flexibility and robustness to model uncertainties.A full car model with seven degrees of freedom was establi...A new semi-active suspension control strategy through mixed H2/H∞ robust technique was developed due to its flexibility and robustness to model uncertainties.A full car model with seven degrees of freedom was established to demonstrate the effectiveness of the new control approach.Magneto-rheological(MR) dampers were designed,manufactured and characterized as available semi-active actuators in the developed semi-active suspension system.The four independent mixed H2/H∞ controllers were devised in order to perform a distributed semi-active control system in the vehicle by which the response velocity and reliability can be improved significantly.The performance of the proposed new approach was investigated in time and frequency domains.A good balance between vehicle's comfort and road holding was achieved.An effective and practical control strategy for semi-active suspension system was thus obtained.This new approach exhibits some advantages in implementation,performance flexibility and robustness compared to existing methods.展开更多
基金National Natural Science Foundation of China(Nos.62171285,61971120 and 62327807)。
文摘A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward controller is a novel input rate-dependent neural network hysteresis inverse model,while the feedback controller is a proportion integration differentiation(PID)controller.In the proposed inverse model,an input ratedependent auxiliary inverse operator(RAIO)and output of the hysteresis construct the expanded input space(EIS)of the inverse model which transforms the hysteresis inverse with multi-valued mapping into single-valued mapping,and the wiping-out,rate-dependent and continuous properties of the RAIO are analyzed in theories.Based on the EIS method,a hysteresis neural network inverse model,namely the dynamic back propagation neural network(DBPNN)model,is established.Moreover,a hybrid compensation scheme for the PEAs is designed to compensate for the hysteresis.Finally,the proposed method,the conventional PID controller and the hybrid controller with the modified input rate-dependent Prandtl-Ishlinskii(MRPI)model are all applied in the experimental platform.Experimental results show that the proposed method has obvious superiorities in the performance of the system.
文摘Based on the principle of chemical engineering in the multisubject field—drug delivery, the release kinetics of the slab monolithic matrix with an initially linear concentration distribution is studied in this paper. It can be used to describe the later stage when drug loading is above its solubility limit. A comprehensive model is proposed and the generalized solutions are acquired by Laplace transformation, from which a special case, i.e. a perfect sink has been deduced. According to the derived equations, the concentration profiles in the matrix has been computed and illustrated and the effect of volume of extraction medium on release has been investigated.
基金Project (51474257) supported by the National Natural Science Foundation of ChinaProject (2015zzts037) supported by the Postgraduate Research and Innovation Projects of Hunan Province,ChinaProject (2015JC3005) supported by the Key Technology Research and Development Program of Hunan Province,China
文摘The leaching kinetics of Sb and Fe from antimony-bearing complex sulfides ore was investigated in HCl solution by oxidation?leaching with ozone.The effects of temperature,HCl concentration,stirring speed and particle size on the process were explored.It is found that the recoveries of Sb and Fe reach86.1%and28.8%,respectively,when the reaction conditions are4.0mol/L HCl,900r/min stirring speed at85°C with<0.074mm particle size after50min leaching.XRD analysis indicates that no new solid product forms in the leaching residue and the leaching process can be described by shrinking core model.The leaching of Sb corresponds to diffusion-controlled model at low temperature(15?45°C)and mixed-controlled model at high temperature(45?85°C),and the apparent activation energies are6.91and17.93kJ/mol,respectively.The leaching of Fe corresponds to diffusion-controlled model,and the apparent activation energy is1.99kJ/mol.Three semi-empirical rate equations are obtained to describe the leaching process.
基金The Open Fund Project of National Key Laboratory of High Performance Civil Engineering Materials(No.2016CEM001)
文摘A fatigue damage model based on thermodynamics was deduced for asphalt mixtures under controlled-stress and controlled-strain modes. By employing modulus of resilience as the damage hardening variable, a damage variable related with dynamic modulus was extracted as the evaluation index. Then, the damage evolution law under two control modes was proposed, and it has a similar form to the Chaboche fatigue model with a nonnegative material parameter m related to its loading level. Experimental data of four loading levels were employed to calibrate the model and identify the parameter in both control modes. It is found that the parameter m shows an exponential relationship with its loading level. Besides, the difference of damage evolution under two control modes was explained by the law. The damage evolves from fast to slow under a controlled-strain mode. However, under a controlled-stress mode, the evolution rate is just the opposite. By using the damage equivalence principle to calculate the equivalent cycle numbers, the deduced model also interprets the difference of damage evolution under two control modes on the condition of multilevel loading. Under a controlled-strain mode, a loading sequence from a low level to a high level accelerates damage evolution. An inverse order under the controlled-stress mode can prolong fatigue life.
基金Project(51105170) supported by the National Natural Science Foundation of ChinaProject supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education,China
文摘The hysteresis characteristic is the major deficiency in the positioning control of magnetic shape memory alloy actuator. A Prandtl-Ishlinskii model was developed to characterize the hysteresis of magnetic shape memory alloy actuator. Based on the proposed Prandtl-Ishlinskii model, the inverse Prandtl-Ishlinskii model was established as a feedforward controller to compensate the hysteresis of the magnetic shape memory alloy actuator. For further improving of the positioning precision of the magnetic shape memory alloy actuator, a hybrid control method with hysteresis nonlinear model in feedforward loop was proposed. The control method is separated into two parts: a feedforward loop with inverse Prandtl-Ishlinskii model and a feedback loop with neural network controller. To validate the validity of the proposed control method, a series of simulations and experiments were researched. The simulation and experimental results demonstrate that the maximum error rate of open loop controller based on inverse PI model is 1.72%, the maximum error rate of the hybrid controller based on inverse PI model is 1.37%.
基金Project(50775225) supported by the National Natural Science Foundation of ChinaProjects(CSTC, 2008AC6097, 2008BA6025) supported by National Natural Science Foundation of Chongqing, China
文摘A new semi-active suspension control strategy through mixed H2/H∞ robust technique was developed due to its flexibility and robustness to model uncertainties.A full car model with seven degrees of freedom was established to demonstrate the effectiveness of the new control approach.Magneto-rheological(MR) dampers were designed,manufactured and characterized as available semi-active actuators in the developed semi-active suspension system.The four independent mixed H2/H∞ controllers were devised in order to perform a distributed semi-active control system in the vehicle by which the response velocity and reliability can be improved significantly.The performance of the proposed new approach was investigated in time and frequency domains.A good balance between vehicle's comfort and road holding was achieved.An effective and practical control strategy for semi-active suspension system was thus obtained.This new approach exhibits some advantages in implementation,performance flexibility and robustness compared to existing methods.