期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
大型浆态床渣油加氢装置混合搅拌釜设计研究 被引量:1
1
作者 邱永宁 刘世平 张万尧 《炼油技术与工程》 CAS 2023年第2期53-56,共4页
混合搅拌釜是通过高速旋转的偏心搅拌转子对渣油新鲜进料、减压循环料、液态催化剂进行均相混合,然后排出混合液的超大型非标搅拌釜(全容积580 m3),是3.0 Mt/a浆态床渣油加氢装置的关键核心大型动设备。从混合搅拌釜结构出发,介绍了混... 混合搅拌釜是通过高速旋转的偏心搅拌转子对渣油新鲜进料、减压循环料、液态催化剂进行均相混合,然后排出混合液的超大型非标搅拌釜(全容积580 m3),是3.0 Mt/a浆态床渣油加氢装置的关键核心大型动设备。从混合搅拌釜结构出发,介绍了混合搅拌釜釜体及搅拌器的设计、制造与热处理要求。通过优化结构,改善了凸缘法兰上表面水平度;釜体支撑采用锥形裙座,解决了设备的稳定性及热膨胀问题;采用高效轴流型曲面宽叶片偏心搅拌,有利于不同介质的混合、流动。在设计温度360℃、设计压力1.2 MPa的条件下,混合搅拌釜封头、凸缘法兰和裙座校核合格。 展开更多
关键词 浆态床 渣油加氢装置 混合搅拌釜 偏心搅拌 应力强度 搅拌 热处理
下载PDF
An aligned mixture probabilistic principal component analysis for fault detection of multimode chemical processes 被引量:5
2
作者 杨雅伟 马玉鑫 +1 位作者 宋冰 侍洪波 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第8期1357-1363,共7页
A novel approach named aligned mixture probabilistic principal component analysis(AMPPCA) is proposed in this study for fault detection of multimode chemical processes. In order to exploit within-mode correlations,the... A novel approach named aligned mixture probabilistic principal component analysis(AMPPCA) is proposed in this study for fault detection of multimode chemical processes. In order to exploit within-mode correlations,the AMPPCA algorithm first estimates a statistical description for each operating mode by applying mixture probabilistic principal component analysis(MPPCA). As a comparison, the combined MPPCA is employed where monitoring results are softly integrated according to posterior probabilities of the test sample in each local model. For exploiting the cross-mode correlations, which may be useful but are inadvertently neglected due to separately held monitoring approaches, a global monitoring model is constructed by aligning all local models together. In this way, both within-mode and cross-mode correlations are preserved in this integrated space. Finally, the utility and feasibility of AMPPCA are demonstrated through a non-isothermal continuous stirred tank reactor and the TE benchmark process. 展开更多
关键词 Multimode process monitoring Mixture probabilistic principal component analysis Model alignment Fault detection
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部