期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于混合搜索方向的前向复值神经网络的学习算法
1
作者 黄鹤 张永亮 《控制与决策》 EI CSCD 北大核心 2023年第10期2815-2822,共8页
复值有限内存BFGS(CL-BFGS)算法能有效用于求解复数域的无约束优化问题,但其性能容易受到记忆尺度的影响.为了解决记忆尺度的选择问题,提出一种基于混合搜索方向的CL-BFGS算法.对于给定的记忆尺度候选集,采用滑动窗口法将其划分成有限... 复值有限内存BFGS(CL-BFGS)算法能有效用于求解复数域的无约束优化问题,但其性能容易受到记忆尺度的影响.为了解决记忆尺度的选择问题,提出一种基于混合搜索方向的CL-BFGS算法.对于给定的记忆尺度候选集,采用滑动窗口法将其划分成有限个子集,将各子集元素作为记忆尺度计算得到一组混合方向,选择使目标函数值最小的混合方向作为当前迭代的搜索方向.在迭代过程中,采用混合搜索方向的策略有益于强化对最新曲率信息的利用,便于记忆尺度的选取,提高算法的收敛速度,所提出的CL-BFGS算法适用于多层前向复值神经网络的高效学习.最后通过在模式识别、非线性信道均衡和复函数逼近上的实验验证了基于混合搜索方向的CLBFGS算法能取得比一些已有算法更好的性能. 展开更多
关键词 前向复值神经网络 复值L-BFGS算法 记忆尺度 混合搜索方向 曲率 高效学习
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部