In this paper,we consider a cognitive radio system with energy harvesting,in which the secondary user operates in a saving-sensing-transmitting(SST) fashion.We investigate the tradeoff between energy harvesting,channe...In this paper,we consider a cognitive radio system with energy harvesting,in which the secondary user operates in a saving-sensing-transmitting(SST) fashion.We investigate the tradeoff between energy harvesting,channel sensing and data transmission and focus on the optimal SST structure to maximize the SU's expected achievable throughput.We consider imperfect knowledge of energy harvesting rate,which cannot be exactly known and only its statistical information is available.By formulating the problem of expected achievable throughput optimization as a mixed-integer non-linear programming one,we derive the optimal saveratio and number of sensed channels with indepth analysis.Simulation results show that the optimal SST structure outperforms random one and performance gain can be enhanced by increasing the SU's energy harvesting rate.展开更多
An energy effi cient resource allocation scheme in timesharing multiuser system with a hybrid energy harvesting transmitter is studied in this paper. Specially, the operation energy of system is supplied by constant e...An energy effi cient resource allocation scheme in timesharing multiuser system with a hybrid energy harvesting transmitter is studied in this paper. Specially, the operation energy of system is supplied by constant energy and energy harvesting, which harvests energy from external environment. Our goal is to maximize the energy effi ciency of timesharing multiuser systems by considering jointly allocation of transmission time and power control in an off-line manner. The original nonconvex objective function is transformed into convex optimization problem via the fractional programming approach. Then, we solve the convex problem by Lagrange dual decomposition method. Simulation results show that the proposed energy efficient resource allocation scheme has a better performance than the scheme which decomposes optimization problem into two parts(power allocation, time allocation) to solve iteratively.展开更多
Recently, a kind of hybrid solution MEA-methanol shows a better CO_2 capture performance over aqueous MEA solution. However, the vaporization of methanol is the biggest disadvantage that hinders its application, so it...Recently, a kind of hybrid solution MEA-methanol shows a better CO_2 capture performance over aqueous MEA solution. However, the vaporization of methanol is the biggest disadvantage that hinders its application, so it is necessary to minimize the vaporization of methanol during both the absorption and regeneration processes. In this work, two kinds of hybrid solutions were studied and compared with aqueous MEA solution and MEA-methanol solution, including MEA/TEA/methanol solution and MEA/glycerol/methanol solution. The absorption property of MEA/glycerol/methanol solution is better than aqueous MEA solution within a certain period of time and the absorption property of MEA/TEA/methanol solution is too poor to be used in CO_2 capture. By increasing the concentration of TEA and decreasing the concentration of MEA, the absorption rate, CO_2 capture efficiency and absorption capacity all decreased. Upon adding glycerol, the cyclic capacity decreased and the generation temperature increased, and moreover, the density and viscosity also increased considerably. So after adding TEA and glycerol, the CO_2 capture performance of MEAmethanol solvent cannot be improved.展开更多
Oil and gas breakthroughs have been achieved in the Zhongshen 1(ZS1) and 1 C(ZS1 C) wells in Cambrian pre-salt from the Tarim Basin in northwest China. However, Middle and Lower Cambrian reservoirs reveal substantial ...Oil and gas breakthroughs have been achieved in the Zhongshen 1(ZS1) and 1 C(ZS1 C) wells in Cambrian pre-salt from the Tarim Basin in northwest China. However, Middle and Lower Cambrian reservoirs reveal substantial differences in the geochemistry and secondary alteration characteristics between the oils collected from the two wells. High concentrations of thiadiamondoids and diamondoidthiols, including thiatetramantanes, tetramantanethiols, thiapentamantanes, and pentamantanethiols, are detected in the organic sulfur compound fraction of concentrated oil collected from the ZS1 C well, which samples the Lower Cambrian Xiaoerbulake Formation. Higher diamondoids, such as tetramantanes, pentamantanes, hexamantanes, and cyclohexamantane, also occur in the saturate fractions of the concentrated ZS1 C oil. The presence of these compounds is verified by mass spectra analysis and comparison with previous studies. During thermochemical sulfate reduction(TSR), the cage of higher diamondoids is interpreted to open because of sulfur radicals forming open-cage higher diamondoid-like thiols, followed by cyclization that leads to the formation of high thiadiamondoids. Using D_(16)-adamantane as an internal standard, the concentrations of lower diamondoids and thiadiamondoids of non-concentrated Cambrian oil from well ZS1 C are 83874 and8578 μg/g, respectively, which are far higher than Cambrian oil from well ZS1 and most Ordovician oils in the Tarim Basin. The high concentrations of lower thiadiamondoids and occurrence of higher thiadiamondoids and diamondoidthiols support that the oil from well ZS1 C is a product of severe TSR alteration.展开更多
基金supported by National Nature Science Foundation of China(NO.61372109)
文摘In this paper,we consider a cognitive radio system with energy harvesting,in which the secondary user operates in a saving-sensing-transmitting(SST) fashion.We investigate the tradeoff between energy harvesting,channel sensing and data transmission and focus on the optimal SST structure to maximize the SU's expected achievable throughput.We consider imperfect knowledge of energy harvesting rate,which cannot be exactly known and only its statistical information is available.By formulating the problem of expected achievable throughput optimization as a mixed-integer non-linear programming one,we derive the optimal saveratio and number of sensed channels with indepth analysis.Simulation results show that the optimal SST structure outperforms random one and performance gain can be enhanced by increasing the SU's energy harvesting rate.
基金supported in part by the National Natural Science Foundation of China(61471115)in part by the 2016 Science and Technology Joint Research and Innovation Foundation of Jiangsu Province(BY2016076-13)
文摘An energy effi cient resource allocation scheme in timesharing multiuser system with a hybrid energy harvesting transmitter is studied in this paper. Specially, the operation energy of system is supplied by constant energy and energy harvesting, which harvests energy from external environment. Our goal is to maximize the energy effi ciency of timesharing multiuser systems by considering jointly allocation of transmission time and power control in an off-line manner. The original nonconvex objective function is transformed into convex optimization problem via the fractional programming approach. Then, we solve the convex problem by Lagrange dual decomposition method. Simulation results show that the proposed energy efficient resource allocation scheme has a better performance than the scheme which decomposes optimization problem into two parts(power allocation, time allocation) to solve iteratively.
基金supported by the Sinopec Ningbo Engineering Co., Ltd. (No. 14850000-14-ZC0609-0003, H8XY-0032)
文摘Recently, a kind of hybrid solution MEA-methanol shows a better CO_2 capture performance over aqueous MEA solution. However, the vaporization of methanol is the biggest disadvantage that hinders its application, so it is necessary to minimize the vaporization of methanol during both the absorption and regeneration processes. In this work, two kinds of hybrid solutions were studied and compared with aqueous MEA solution and MEA-methanol solution, including MEA/TEA/methanol solution and MEA/glycerol/methanol solution. The absorption property of MEA/glycerol/methanol solution is better than aqueous MEA solution within a certain period of time and the absorption property of MEA/TEA/methanol solution is too poor to be used in CO_2 capture. By increasing the concentration of TEA and decreasing the concentration of MEA, the absorption rate, CO_2 capture efficiency and absorption capacity all decreased. Upon adding glycerol, the cyclic capacity decreased and the generation temperature increased, and moreover, the density and viscosity also increased considerably. So after adding TEA and glycerol, the CO_2 capture performance of MEAmethanol solvent cannot be improved.
基金supported by the National Natural Science Foundation of China (Grant No. 41772153)State Key Laboratory of Organic Geochemistry, GIGCAS (Grant No. SKLOG2017-02)+1 种基金National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2017ZX05005-002)SINOPEC Ministry of Science and Technology (Grant No. P16090, P17049-1)
文摘Oil and gas breakthroughs have been achieved in the Zhongshen 1(ZS1) and 1 C(ZS1 C) wells in Cambrian pre-salt from the Tarim Basin in northwest China. However, Middle and Lower Cambrian reservoirs reveal substantial differences in the geochemistry and secondary alteration characteristics between the oils collected from the two wells. High concentrations of thiadiamondoids and diamondoidthiols, including thiatetramantanes, tetramantanethiols, thiapentamantanes, and pentamantanethiols, are detected in the organic sulfur compound fraction of concentrated oil collected from the ZS1 C well, which samples the Lower Cambrian Xiaoerbulake Formation. Higher diamondoids, such as tetramantanes, pentamantanes, hexamantanes, and cyclohexamantane, also occur in the saturate fractions of the concentrated ZS1 C oil. The presence of these compounds is verified by mass spectra analysis and comparison with previous studies. During thermochemical sulfate reduction(TSR), the cage of higher diamondoids is interpreted to open because of sulfur radicals forming open-cage higher diamondoid-like thiols, followed by cyclization that leads to the formation of high thiadiamondoids. Using D_(16)-adamantane as an internal standard, the concentrations of lower diamondoids and thiadiamondoids of non-concentrated Cambrian oil from well ZS1 C are 83874 and8578 μg/g, respectively, which are far higher than Cambrian oil from well ZS1 and most Ordovician oils in the Tarim Basin. The high concentrations of lower thiadiamondoids and occurrence of higher thiadiamondoids and diamondoidthiols support that the oil from well ZS1 C is a product of severe TSR alteration.