In this paper, the geometrical design for the blade's surface in an impeller or for the profile of an aircraft, is modeled from the mathematical point of view by a boundary shape control problem for the Navier-Sto...In this paper, the geometrical design for the blade's surface in an impeller or for the profile of an aircraft, is modeled from the mathematical point of view by a boundary shape control problem for the Navier-Stokes equations. The objective function is the sum of a global dissipative function and the power of the fluid. The control variables are the geometry of the boundary and the state equations are the Navier-Stokes equations. The Euler-Lagrange equations of the optimal control problem are derived, which are an elliptic boundary value system of fourth order, coupled with the Navier-Stokes equations. The authors also prove the existence of the solution of the optimal control problem, the existence of the solution of the Navier-Stokes equations with mixed boundary conditions, the weak continuity of the solution of the Navier-Stokes equations with respect to the geometry shape of the blade's surface and the existence of solutions of the equations for the Gateaux derivative of the solution of the Navier-Stokes equations with respect to the geometry of the boundary.展开更多
基金supported by the National High-Tech Research and Development Program of China (No.2009AA01A135)the National Natural Science Foundation of China (Nos. 10926080, 10971165, 10871156)Xian Jiaotong University (No. XJJ2008033)
文摘In this paper, the geometrical design for the blade's surface in an impeller or for the profile of an aircraft, is modeled from the mathematical point of view by a boundary shape control problem for the Navier-Stokes equations. The objective function is the sum of a global dissipative function and the power of the fluid. The control variables are the geometry of the boundary and the state equations are the Navier-Stokes equations. The Euler-Lagrange equations of the optimal control problem are derived, which are an elliptic boundary value system of fourth order, coupled with the Navier-Stokes equations. The authors also prove the existence of the solution of the optimal control problem, the existence of the solution of the Navier-Stokes equations with mixed boundary conditions, the weak continuity of the solution of the Navier-Stokes equations with respect to the geometry shape of the blade's surface and the existence of solutions of the equations for the Gateaux derivative of the solution of the Navier-Stokes equations with respect to the geometry of the boundary.