Suppose {Xi, i≥1} and {Yi, i≥1} are two independent sequences with distribution functions FX(x) and FY(x), respectively. Zi is the combination of Xi and Yi with a probability pn for each i with 1≤i≤n. The extreme ...Suppose {Xi, i≥1} and {Yi, i≥1} are two independent sequences with distribution functions FX(x) and FY(x), respectively. Zi is the combination of Xi and Yi with a probability pn for each i with 1≤i≤n. The extreme value distribution ,n GZ(x) of this particular triangular array of the i.i.d. random variables Z1, , Z2, ,…, Zn n n ,nis discussed. We found a new form of the extreme value distribution ΛA(ρx)Λ(x)(0<ρ <1), which is not max-stable. It occurs if FX(x) and FY(x) belong to the same MDA(Λ). GZ(x) does not exist as mixture forms of the different types of extreme value distributions.展开更多
It has been shown that the deployment of device-to-device(D2D) communication in cellular systems can provide better support for local services. However, improper design of the hybrid system may cause severe interferen...It has been shown that the deployment of device-to-device(D2D) communication in cellular systems can provide better support for local services. However, improper design of the hybrid system may cause severe interference between cellular and D2D links. In this paper, we consider transceiver design for the system employing multiple antennas to mitigate the interference. The precoder and decoder matrices are optimized in terms of sum mean squared error(MSE) and capacity, respectively. For the MSE minimization problem, we present an alternative transceiver optimization algorithm. While for the non-convex capacity maximization problem, we decompose the primal problem into a sequence of standard convex quadratic programs for efficient optimization. The evaluation of our proposed algorithms for performance enhancement of the entire D2D integrated cellular system is carried out through simulations.展开更多
In this paper, a high-resolution, hybrid compact-WENO scheme is developed based on the minimized dispersion and controllable dissipation reconstruction technique. Firstly, a sufficient condition for a family oftri-dia...In this paper, a high-resolution, hybrid compact-WENO scheme is developed based on the minimized dispersion and controllable dissipation reconstruction technique. Firstly, a sufficient condition for a family oftri-diagonal compact schemes to have independent dispersion and dissipation is derived. Then, a specific 4th order compact scheme with low dispersion and adjustable dissipation is constructed and analyzed. Finally, the optimized compact scheme is blended with the WENO scheme to form the hybrid scheme. Moreover, the approximation dispersion relation approach is employed to optimize the spectral properties of the nonlinear scheme to yield the true wave propagation behavior of the finite difference scheme. Several test cases are carried out to verify the high- resolution as well as the robust shock-capturing capabilities of the proposed scheme.展开更多
文摘Suppose {Xi, i≥1} and {Yi, i≥1} are two independent sequences with distribution functions FX(x) and FY(x), respectively. Zi is the combination of Xi and Yi with a probability pn for each i with 1≤i≤n. The extreme value distribution ,n GZ(x) of this particular triangular array of the i.i.d. random variables Z1, , Z2, ,…, Zn n n ,nis discussed. We found a new form of the extreme value distribution ΛA(ρx)Λ(x)(0<ρ <1), which is not max-stable. It occurs if FX(x) and FY(x) belong to the same MDA(Λ). GZ(x) does not exist as mixture forms of the different types of extreme value distributions.
基金supportedin part by Science and Technology Project of State Grid Corporation of China(SGIT0000KJJS1500008)Science and Technology Project of State Grid Corporation of China:“Research and Application of Distributed Energy Resource Public Information Service Platform based on Multisource Data Fusion and Mobile Internet Technologies”Science and Technology Project of State Grid Corporation of China:“Research on communication access technology for the integration, protection, and acquisition of multiple new energy resources”
文摘It has been shown that the deployment of device-to-device(D2D) communication in cellular systems can provide better support for local services. However, improper design of the hybrid system may cause severe interference between cellular and D2D links. In this paper, we consider transceiver design for the system employing multiple antennas to mitigate the interference. The precoder and decoder matrices are optimized in terms of sum mean squared error(MSE) and capacity, respectively. For the MSE minimization problem, we present an alternative transceiver optimization algorithm. While for the non-convex capacity maximization problem, we decompose the primal problem into a sequence of standard convex quadratic programs for efficient optimization. The evaluation of our proposed algorithms for performance enhancement of the entire D2D integrated cellular system is carried out through simulations.
基金supported by the National Natural Science Foundation of China(Grant No.11302250)a National University Research Grant of Xi’an Research Institute of High-tech(Grant No.2013QNJJ029)
文摘In this paper, a high-resolution, hybrid compact-WENO scheme is developed based on the minimized dispersion and controllable dissipation reconstruction technique. Firstly, a sufficient condition for a family oftri-diagonal compact schemes to have independent dispersion and dissipation is derived. Then, a specific 4th order compact scheme with low dispersion and adjustable dissipation is constructed and analyzed. Finally, the optimized compact scheme is blended with the WENO scheme to form the hybrid scheme. Moreover, the approximation dispersion relation approach is employed to optimize the spectral properties of the nonlinear scheme to yield the true wave propagation behavior of the finite difference scheme. Several test cases are carried out to verify the high- resolution as well as the robust shock-capturing capabilities of the proposed scheme.