期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于情感倾向和SVM混合极短文本分类模型
被引量:
4
1
作者
王鹤琴
王杨
《科技通报》
2018年第8期149-154,共6页
随着智能终端设备的不断普及,微博、微信等国内最受欢迎的社交平台等富含情感倾向的中英文混合极短文本数据的信息呈爆发式增长。为了有效提取中英文混合极短文本中的情感倾向等关键特征信息,本文提出了一种基于情感倾向和SVM的极短文...
随着智能终端设备的不断普及,微博、微信等国内最受欢迎的社交平台等富含情感倾向的中英文混合极短文本数据的信息呈爆发式增长。为了有效提取中英文混合极短文本中的情感倾向等关键特征信息,本文提出了一种基于情感倾向和SVM的极短文本分类模型。首先对原数据进行识别并利用kettle、N-Gram模型对数据进行处理;然后利用TF-IDF提取分类所需要的关键词;再将处理后的数据存入词向量集;最后利用SVM对混合极短文本进行分类。经过K-fold交叉验证,检验了模型的有效性。实验以微博等主流社交平台上的6905条极短文本数据作为样本进行实验与分析。结果表明在分类准确率方面,该方法能够有效提高匹配效率;同时在泛化误差与精确度指标上匹配结果更加均衡。
展开更多
关键词
情感倾向
N-GRAM模型
KETTLE
混合极短文本
SVM
下载PDF
职称材料
题名
基于情感倾向和SVM混合极短文本分类模型
被引量:
4
1
作者
王鹤琴
王杨
机构
安徽警官职业学院信息管理系
安徽师范大学数学计算机科学学院
出处
《科技通报》
2018年第8期149-154,共6页
基金
国家自然科学基金(No.61572036)
安徽省高校自然科学研究重点项目(No.KJ2016A167)
安徽省高等学校自然科学研究重点项目(No.KJ2017A639)
文摘
随着智能终端设备的不断普及,微博、微信等国内最受欢迎的社交平台等富含情感倾向的中英文混合极短文本数据的信息呈爆发式增长。为了有效提取中英文混合极短文本中的情感倾向等关键特征信息,本文提出了一种基于情感倾向和SVM的极短文本分类模型。首先对原数据进行识别并利用kettle、N-Gram模型对数据进行处理;然后利用TF-IDF提取分类所需要的关键词;再将处理后的数据存入词向量集;最后利用SVM对混合极短文本进行分类。经过K-fold交叉验证,检验了模型的有效性。实验以微博等主流社交平台上的6905条极短文本数据作为样本进行实验与分析。结果表明在分类准确率方面,该方法能够有效提高匹配效率;同时在泛化误差与精确度指标上匹配结果更加均衡。
关键词
情感倾向
N-GRAM模型
KETTLE
混合极短文本
SVM
Keywords
emotional tendency
N-Gram model
kettle
hybrid extremely short text
SVM
分类号
TP39 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于情感倾向和SVM混合极短文本分类模型
王鹤琴
王杨
《科技通报》
2018
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部