For deposit body medium, the internal structural properties may be the controlling factors for the strength of the material and the mechanical response. Based on the results of soil-rock meso-statistics using digital ...For deposit body medium, the internal structural properties may be the controlling factors for the strength of the material and the mechanical response. Based on the results of soil-rock meso-statistics using digital imaging, a simulated annealing algorithm is adopted to expand the meso-structural features of deposit bodies in 3D. The construction of the 3D meso-structure of a deposit body is achieved, and then the particle flow analysis program PFC3 D is used to simulate the mechanical properties of the deposit body. It is shown that with a combination of the simulated annealing algorithm and the statistical feature functions, the randomness and heterogeneity of the rock distribution in the 3D inner structure of deposit body medium can be realized, and the reconstructed structural features of the deposit medium can match the features of the digital images well. The spatial utilizations and the compacting effects of the body-centered cubic, hexagonal close and face-centered packing models are high, so these structures can be applied in the simulations of the deposit structures. However, the shear features of the deposit medium vary depending on the different model constructive modes. Rocks, which are the backbone of the deposit, are the factors that determine the shear strength and deformation modulus of the deposit body. The modeling method proposed is useful for the construction of 3D meso-scope models from 2D meso-scope statistics and can be used for studying the mechanical properties of mixed media, such as deposit bodies.展开更多
The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete elem...The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete element method.A randomly generating algorithm was proposed to capture the three-dimensional irregular shape of coarse aggregate.And then,modeling algorithm and method for graded aggregates were built.Based on the combination of modeling of coarse aggregates,asphalt mastic and air voids,three-dimensional virtual sample of asphalt mixture was modeled by using PFC^(3D).Virtual tests for penetration test of aggregate and uniaxial creep test of asphalt mixture were built and conducted by using PFC^(3D).By comparison of the testing results between virtual tests and actual laboratory tests,the validity of the microstructure modeling and virtual test built in this study was verified.Additionally,compared with laboratory test,the virtual test is easier to conduct and has less variability.It is proved that microstructure modeling and virtual test based on three-dimensional discrete element method is a promising way to conduct research of asphalt mixture.展开更多
In order to take precaution and cure against intemet of vehicles (IOV) worm propagation in expressway, the IOV worm propagation and its corresponding anti-worm strategy were studied in expressway interchange termina...In order to take precaution and cure against intemet of vehicles (IOV) worm propagation in expressway, the IOV worm propagation and its corresponding anti-worm strategy were studied in expressway interchange terminal. According to omnirange driving in expressway interchange terminal and vehicular mobile communication environment, an IOV worm propagation model is constructed; and then according to the dynamic propagation law and destructiveness of IOV worm in this environment, a novel hybrid anti-worm strategy for confrontation is designed. This worm propagation model can factually simulates the IOV worm propagation in this interchange terminal environment; and this hybrid anti-worm strategy can effectively control IOV worm propagation in the environment, moreover, it can reduce the influence on network resource overhead.展开更多
基金Projects(51309089,11202063)supported by the National Natural Science Foundation of ChinaProject(2013BAB06B01)supported by the National High Technology Research and Development Program of China+1 种基金Project(2015CB057903)supported by the National Basic Research Program of ChinaProject(BK20130846)supported by Natural Science Foundation of Jiangsu Province,China
文摘For deposit body medium, the internal structural properties may be the controlling factors for the strength of the material and the mechanical response. Based on the results of soil-rock meso-statistics using digital imaging, a simulated annealing algorithm is adopted to expand the meso-structural features of deposit bodies in 3D. The construction of the 3D meso-structure of a deposit body is achieved, and then the particle flow analysis program PFC3 D is used to simulate the mechanical properties of the deposit body. It is shown that with a combination of the simulated annealing algorithm and the statistical feature functions, the randomness and heterogeneity of the rock distribution in the 3D inner structure of deposit body medium can be realized, and the reconstructed structural features of the deposit medium can match the features of the digital images well. The spatial utilizations and the compacting effects of the body-centered cubic, hexagonal close and face-centered packing models are high, so these structures can be applied in the simulations of the deposit structures. However, the shear features of the deposit medium vary depending on the different model constructive modes. Rocks, which are the backbone of the deposit, are the factors that determine the shear strength and deformation modulus of the deposit body. The modeling method proposed is useful for the construction of 3D meso-scope models from 2D meso-scope statistics and can be used for studying the mechanical properties of mixed media, such as deposit bodies.
基金Project(51378006) supported by National Natural Science Foundation of ChinaProject(141076) supported by Huoyingdong Foundation of the Ministry of Education of China+1 种基金Project(2242015R30027) supported by Excellent Young Teacher Program of Southeast University,ChinaProject(BK20140109) supported by the Natural Science Foundation of Jiangsu Province,China
文摘The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete element method.A randomly generating algorithm was proposed to capture the three-dimensional irregular shape of coarse aggregate.And then,modeling algorithm and method for graded aggregates were built.Based on the combination of modeling of coarse aggregates,asphalt mastic and air voids,three-dimensional virtual sample of asphalt mixture was modeled by using PFC^(3D).Virtual tests for penetration test of aggregate and uniaxial creep test of asphalt mixture were built and conducted by using PFC^(3D).By comparison of the testing results between virtual tests and actual laboratory tests,the validity of the microstructure modeling and virtual test built in this study was verified.Additionally,compared with laboratory test,the virtual test is easier to conduct and has less variability.It is proved that microstructure modeling and virtual test based on three-dimensional discrete element method is a promising way to conduct research of asphalt mixture.
基金Project(61005008) supported by the National Natural Science Foundation of ChinaProject(JI300D004) supported by the COSTIND Application Foundation of China
文摘In order to take precaution and cure against intemet of vehicles (IOV) worm propagation in expressway, the IOV worm propagation and its corresponding anti-worm strategy were studied in expressway interchange terminal. According to omnirange driving in expressway interchange terminal and vehicular mobile communication environment, an IOV worm propagation model is constructed; and then according to the dynamic propagation law and destructiveness of IOV worm in this environment, a novel hybrid anti-worm strategy for confrontation is designed. This worm propagation model can factually simulates the IOV worm propagation in this interchange terminal environment; and this hybrid anti-worm strategy can effectively control IOV worm propagation in the environment, moreover, it can reduce the influence on network resource overhead.