A transient finite element model has been developed to study the heat transfer and fluid flow during spot Gas Tungsten Arc Welding (GTAW) on stainless steel. Temperature field, fluid velocity and electromagnetic fie...A transient finite element model has been developed to study the heat transfer and fluid flow during spot Gas Tungsten Arc Welding (GTAW) on stainless steel. Temperature field, fluid velocity and electromagnetic fields are computed inside the cathode, arc-plasma and anode using a unified MHD formulation. The developed model is then used to study the influence of different helium-argon gas mixtures on both the energy transferred to the workpiece and the time evolution of the weld pool dimensions. It is found that the addition of helium to argon increases the heat flux density on the weld axis by a factor that can reach 6.5. This induces an increase in the weld pool depth by a factor of 3. It is also found that the addition of only 10% of argon to helium decreases considerably the weld pool depth, which is due to the electrical conductivity of the mixture that increases significantly when argon is added to helium.展开更多
The experimental and numerical investigations of the flow with reaction of two gases: hydrogen chloride HC1 and ammonia NH3 were performed. The article contains description of the visualisation method of the formation...The experimental and numerical investigations of the flow with reaction of two gases: hydrogen chloride HC1 and ammonia NH3 were performed. The article contains description of the visualisation method of the formation and flow of particles of ammonia chloride NH4Cl. Analyses of mean concentration and variance of concentration fluctuations of dispersed phase were performed for different outputs of gases. Numerical calculations were performed for analysed phenomenon. Both numerical and visualisation results were matched and compared.展开更多
文摘A transient finite element model has been developed to study the heat transfer and fluid flow during spot Gas Tungsten Arc Welding (GTAW) on stainless steel. Temperature field, fluid velocity and electromagnetic fields are computed inside the cathode, arc-plasma and anode using a unified MHD formulation. The developed model is then used to study the influence of different helium-argon gas mixtures on both the energy transferred to the workpiece and the time evolution of the weld pool dimensions. It is found that the addition of helium to argon increases the heat flux density on the weld axis by a factor that can reach 6.5. This induces an increase in the weld pool depth by a factor of 3. It is also found that the addition of only 10% of argon to helium decreases considerably the weld pool depth, which is due to the electrical conductivity of the mixture that increases significantly when argon is added to helium.
文摘The experimental and numerical investigations of the flow with reaction of two gases: hydrogen chloride HC1 and ammonia NH3 were performed. The article contains description of the visualisation method of the formation and flow of particles of ammonia chloride NH4Cl. Analyses of mean concentration and variance of concentration fluctuations of dispersed phase were performed for different outputs of gases. Numerical calculations were performed for analysed phenomenon. Both numerical and visualisation results were matched and compared.