期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
地下气化煤气在SOFC中的应用前景 被引量:1
1
作者 韩敏芳 田野 +1 位作者 彭苏萍 梁杰 《电池》 CAS CSCD 北大核心 2004年第3期217-218,共2页
介绍了中国矿业大学的部分煤炭地下气化试验 ,试验煤气主要可燃成分为H2 、CO、CH4,含量分别为 48%~ 65 %、9%~ 2 5 %和 7%~ 16% ,适用于做固体氧化物燃料电池 (SOFC)的燃料。将煤炭地下气化与SOFC结合起来建成高效、清洁的坑口电站 。
关键词 煤炭地下气化 固体氧化物燃料电池 混合水煤气
下载PDF
Investigation on Steam Gasification of High-metamorphous Anthracite Using Mixed Black Liquor and Calcium Catalyst 被引量:8
2
作者 Gul-e-Rana JAFFRI 张济宇 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第4期575-583,共9页
The catalytic effects of single and mixed catalysts, i.e. single 3%Ca and 5%Na-BL(black liquor) catalysts and mixed 3%Ca+5%Na-BL catalyst, on carbon conversion, gasification reaction rate constant and activation en... The catalytic effects of single and mixed catalysts, i.e. single 3%Ca and 5%Na-BL(black liquor) catalysts and mixed 3%Ca+5%Na-BL catalyst, on carbon conversion, gasification reaction rate constant and activation energy, relative amount of harmful pollutant like sulphur containing gases have been investigated by thermogravimetry in steam gasification under temperature 750℃ to 950℃ at ambient pressure for three high-metarnorphous anthracites (Longyan, Fenghai and Youxia coals in Fujian Province). The mixed catalyst of 3%Ca+5%Na-BL increases greatly the carbon conversion and gasification rate constant by accelerating the gasification reaction C+H2O→CO+H2 due to presence of alkali surfacecompounds [COM], [CO2M] and exchanged calcium phenolate and calcium carboxylate (-COO)2. By adding CaCO3 into BL catalyst in gasification, in addition to improving the catalyst function and enhancing the carbon conversion, the effective desulphurization is also achieved, but the better operating temperature should be below 900℃. The homogenous and shrinking core models can be successfully employed to correlate the relations between the conversion and the gasification .time .and to estimate the reaction rate constant, The reaction acUvaUon energy and pre-exponential factor are estimated and the activation energy for mixed catalyst is in a range of 98.72-166.92 kJ·mol^-1, much less than 177.50-196.46 kJ·mol^-1 for non-catalytic steam gasification for three experimental coals. 展开更多
关键词 mixed catalyst CALCIUM black liquor THERMOGRAVIMETRY steam gasification kinetics sulphur containing gas
下载PDF
Model for Reduction of Iron Oxide Pellet with a C-O-H-N Gas Mixture Considering Water Gas Shift Equilibrium in the Gas While It Diffuses through the Product Layer
3
作者 Viswanathan N. Numi Bharath N. Ballal 《Journal of Chemistry and Chemical Engineering》 2013年第7期666-670,共5页
In metallurgical processes, more and more usage of hydrocarbons is encouraged to bring down the carbon emissions. In this regard, numerous investigations on reduction of oxides by C-O-H-N gas mixture have been reporte... In metallurgical processes, more and more usage of hydrocarbons is encouraged to bring down the carbon emissions. In this regard, numerous investigations on reduction of oxides by C-O-H-N gas mixture have been reported. Attempts to simulate these reduction processes using shrinking core model, one of the common models used for such studies, have under predicted the reduction rates. This may be owing to the fact that the homogeneous reaction in the gas phase is not being considered. If the reaction temperatures are above 1,000 K, generally so for many reduction processes, the homogeneous gas reaction rates are expected to be high enough that local equilibrium in the gas phase can be assumed. In the present study, reduction of wustite in a C-O-H-N gas mixture has been modeled using shrinking core model considering the water gas shift equilibrium in the gas while it diffuses through the product layer. 展开更多
关键词 REDUCTION iron ore CO H2 water gas shift reaction kinetics MODEL shrinking core.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部