期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv4的航拍图像目标检测方法研究 被引量:6
1
作者 蒲家鹏 王雪梅 高宏伟 《沈阳理工大学学报》 CAS 2023年第3期46-53,共8页
航拍图像存在目标小、背景复杂、目标与背景占比失衡等问题。YOLO算法对小目标的检测效果不佳,易出现漏检或误检的情况;YOLO的骨干网络参数量庞大,增加了运行设备的负担。为此,以YOLOv4算法为基础进行改进。首先,将YOLOv4的骨干网络CSPD... 航拍图像存在目标小、背景复杂、目标与背景占比失衡等问题。YOLO算法对小目标的检测效果不佳,易出现漏检或误检的情况;YOLO的骨干网络参数量庞大,增加了运行设备的负担。为此,以YOLOv4算法为基础进行改进。首先,将YOLOv4的骨干网络CSPDarkNet53与MobileNetV3相结合,以轻量化网络的参数量;其次,采用混合池化结构(MPM)替换空间金字塔池化结构(SPPM),混合池化结构可丰富感受野,捕获相距较远目标之间的特征,减少目标被漏检或误检的情况发生;最后,对路径聚合网络(PANet)进行改进并融入残差结构(ResNet),提升网络对小目标的检测精度。改进后算法参数量仅为YOLOv4的19.6%;虽然平均精准度下降2.3%,但针对小目标检测的精准度提升10.2%;检测速度每秒增加4.2帧。 展开更多
关键词 航拍图像 YOLOv4 轻量化网络 混合池化结构 残差结构
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部