To extend the PSRK (predictive Soave-Redlich-Kwong equation of state) model to vapor-liquid equilibria of polymer solutions, a new EOS-gE mixing rule is applied in which the term ∑ xi ln(b/bi) in the PSRK mixing rule...To extend the PSRK (predictive Soave-Redlich-Kwong equation of state) model to vapor-liquid equilibria of polymer solutions, a new EOS-gE mixing rule is applied in which the term ∑ xi ln(b/bi) in the PSRK mixing rule for the parameter a, and the combinatorial part in the original universal functional activity coefficient (UNIFAC) model are cancelled. To take into account the free volume contribution to the excess Gibbs energy in polymer solution, a quadratic mixing rule for the cross co-volume bij with an exponent equals to 1/2 is applied[bij1/2= 1/2(bi1/2+bj1/2)]. The literature reported Soave-Redlich-Kwong equation of state (SRK EOS) parameters ofpure polymer are employed. The PSRK model with the modified mixing rule is used to predict the vapor-liquid equilibrium (VLE) of 37 solvent-polymer systems over a large range of temperature and pressure with satisfactory results.展开更多
This work is an experimental approach based on the method of experimental plans to determine a specific formulation of a resin concrete. In this study, an unsaturated polyester resin (thermosetting resin) was used w...This work is an experimental approach based on the method of experimental plans to determine a specific formulation of a resin concrete. In this study, an unsaturated polyester resin (thermosetting resin) was used with two types of mineral fillers (dune sand and crushed sand), and with the addition of a marble powder to ensure the continuity of the particle size mixing granular. The lack of the methods for developing this kind of composite materials, had led us to perform an initial experimental approach to define the experimental field, that is to say determine the mass proportions of the various compounds of mixture of our study. In the second approach, we have established and implemented fully experimental plans with three factors namely: factor (1): sand, factor (2): resin, factor (3): marble powder. Test results being the density of polymer concrete and the mechanical resistances. Finally, multi-parameters regression allowed us to determine predictive mathematical models for the different responses of the study. Tests results showed that at three days we got a tensile strength of about 16 MPa with a resin concrete density of 1.9 g/cm3. This shows the advantages of this material.展开更多
文摘To extend the PSRK (predictive Soave-Redlich-Kwong equation of state) model to vapor-liquid equilibria of polymer solutions, a new EOS-gE mixing rule is applied in which the term ∑ xi ln(b/bi) in the PSRK mixing rule for the parameter a, and the combinatorial part in the original universal functional activity coefficient (UNIFAC) model are cancelled. To take into account the free volume contribution to the excess Gibbs energy in polymer solution, a quadratic mixing rule for the cross co-volume bij with an exponent equals to 1/2 is applied[bij1/2= 1/2(bi1/2+bj1/2)]. The literature reported Soave-Redlich-Kwong equation of state (SRK EOS) parameters ofpure polymer are employed. The PSRK model with the modified mixing rule is used to predict the vapor-liquid equilibrium (VLE) of 37 solvent-polymer systems over a large range of temperature and pressure with satisfactory results.
文摘This work is an experimental approach based on the method of experimental plans to determine a specific formulation of a resin concrete. In this study, an unsaturated polyester resin (thermosetting resin) was used with two types of mineral fillers (dune sand and crushed sand), and with the addition of a marble powder to ensure the continuity of the particle size mixing granular. The lack of the methods for developing this kind of composite materials, had led us to perform an initial experimental approach to define the experimental field, that is to say determine the mass proportions of the various compounds of mixture of our study. In the second approach, we have established and implemented fully experimental plans with three factors namely: factor (1): sand, factor (2): resin, factor (3): marble powder. Test results being the density of polymer concrete and the mechanical resistances. Finally, multi-parameters regression allowed us to determine predictive mathematical models for the different responses of the study. Tests results showed that at three days we got a tensile strength of about 16 MPa with a resin concrete density of 1.9 g/cm3. This shows the advantages of this material.