羧甲基木薯淀粉和羧甲基壳聚糖混合物不仅可有效改善淀粉物化性质,还可引入抑菌性能好的羧甲基壳聚糖。以木薯淀粉、壳聚糖为原料,氯乙酸钠为醚化剂,氢氧化钠为催化剂,采用机械活化固相醚法制备羧甲基木薯淀粉和羧甲基壳聚糖混合物。以...羧甲基木薯淀粉和羧甲基壳聚糖混合物不仅可有效改善淀粉物化性质,还可引入抑菌性能好的羧甲基壳聚糖。以木薯淀粉、壳聚糖为原料,氯乙酸钠为醚化剂,氢氧化钠为催化剂,采用机械活化固相醚法制备羧甲基木薯淀粉和羧甲基壳聚糖混合物。以黏度为评价指标,通过单因素和正交试验设计优化确定最佳制备工艺,采用红外光谱(Fourier transform infrared spectroscopy,FTIR)、X-射线衍射(X-ray diffraction,XRD)、扫描电镜(Scanning electron microscope,SEM)对羧甲基淀粉的结构进行表征,并考察混合物的取代度和溶解度。结果表明,机械活化破坏了淀粉、壳聚糖的结晶结构,降低结晶度,醚化试剂更容易渗透到内部使淀粉、壳聚糖发生羧甲基化反应。最佳工艺参数为:淀粉与壳聚糖质量比0.5:0.5、淀粉与氯乙酸钠的摩比1:0.9、氢氧化钠质量分数18.8%(占淀粉干基质量)、球磨温度50℃、球磨时间60 min、转速380 r/min、磨球体积500 m L。在该试验条件下制备得到的羧甲基木薯淀粉和羧甲基壳聚糖混合物的黏度为1025 m Pa·s,其中羧甲基木薯淀粉的取代度为0.79,羧甲基壳聚糖的总取代度为1.17,溶解度为90.87%,且随着壳聚糖比例增大,混合物溶解度不断减小。FTIR、XRD、SEM进一步证实木薯淀粉、壳聚糖均发生了羧甲基化反应。展开更多
The nano-Bi2O3 powders were prepared by a chemical precipitation method with Bi(NO3)3, HNO3 and NaOH as reactants. The structural characteristics and morphology of nano-Bi2O3 powders were investigated by X-ray diffr...The nano-Bi2O3 powders were prepared by a chemical precipitation method with Bi(NO3)3, HNO3 and NaOH as reactants. The structural characteristics and morphology of nano-Bi2O3 powders were investigated by X-ray diffraction and transmission electron microscopy, respectively. The results show that under the optimum condition that 300g/L Bi(NO3)3 reacts at 90℃ for 2h, the Bi2O3 powders with 60nm on the average and 99.5% in purity are obtained. The prepared nano-Bi2O3 powders contain a mixed crystal structure of monoclinic and triclinic instead of traditional structure of monoclinic α-Bi2O3. And the mixed crystal structure is stable in air. The reason for the appearance of the mixed crystal structure may be that the ionic radius ratio of Bi 3+ to O 2- changes easily during the formation of nano-Bi2O3 particles by a chemical precipitation method.展开更多
In this study, the mechanical properties (tensile strength, elongation at break and folding resistance) of edible biopolymer film blends formed from blended cassava starch and rice flour at different compositions wi...In this study, the mechanical properties (tensile strength, elongation at break and folding resistance) of edible biopolymer film blends formed from blended cassava starch and rice flour at different compositions with sorbital used as a plasticizer. A suitable ratio of cassava starch and rice flour to water at 10% w/v was used to form a film solution. The addition of a plasticizer agent up to 30% w/w of blending compositions improved the mechanical properties of the generated films. The mechanical properties of the edible blended films with 30% plasticizer were strongly dependent on the blending compositions. Our results pointed out that the cassava starch and rice flour films at a ratio of 70:30 with sorbitol 30% (w/w) had the highest tensile strength which related to folding endurance of the films.展开更多
文摘羧甲基木薯淀粉和羧甲基壳聚糖混合物不仅可有效改善淀粉物化性质,还可引入抑菌性能好的羧甲基壳聚糖。以木薯淀粉、壳聚糖为原料,氯乙酸钠为醚化剂,氢氧化钠为催化剂,采用机械活化固相醚法制备羧甲基木薯淀粉和羧甲基壳聚糖混合物。以黏度为评价指标,通过单因素和正交试验设计优化确定最佳制备工艺,采用红外光谱(Fourier transform infrared spectroscopy,FTIR)、X-射线衍射(X-ray diffraction,XRD)、扫描电镜(Scanning electron microscope,SEM)对羧甲基淀粉的结构进行表征,并考察混合物的取代度和溶解度。结果表明,机械活化破坏了淀粉、壳聚糖的结晶结构,降低结晶度,醚化试剂更容易渗透到内部使淀粉、壳聚糖发生羧甲基化反应。最佳工艺参数为:淀粉与壳聚糖质量比0.5:0.5、淀粉与氯乙酸钠的摩比1:0.9、氢氧化钠质量分数18.8%(占淀粉干基质量)、球磨温度50℃、球磨时间60 min、转速380 r/min、磨球体积500 m L。在该试验条件下制备得到的羧甲基木薯淀粉和羧甲基壳聚糖混合物的黏度为1025 m Pa·s,其中羧甲基木薯淀粉的取代度为0.79,羧甲基壳聚糖的总取代度为1.17,溶解度为90.87%,且随着壳聚糖比例增大,混合物溶解度不断减小。FTIR、XRD、SEM进一步证实木薯淀粉、壳聚糖均发生了羧甲基化反应。
文摘The nano-Bi2O3 powders were prepared by a chemical precipitation method with Bi(NO3)3, HNO3 and NaOH as reactants. The structural characteristics and morphology of nano-Bi2O3 powders were investigated by X-ray diffraction and transmission electron microscopy, respectively. The results show that under the optimum condition that 300g/L Bi(NO3)3 reacts at 90℃ for 2h, the Bi2O3 powders with 60nm on the average and 99.5% in purity are obtained. The prepared nano-Bi2O3 powders contain a mixed crystal structure of monoclinic and triclinic instead of traditional structure of monoclinic α-Bi2O3. And the mixed crystal structure is stable in air. The reason for the appearance of the mixed crystal structure may be that the ionic radius ratio of Bi 3+ to O 2- changes easily during the formation of nano-Bi2O3 particles by a chemical precipitation method.
文摘In this study, the mechanical properties (tensile strength, elongation at break and folding resistance) of edible biopolymer film blends formed from blended cassava starch and rice flour at different compositions with sorbital used as a plasticizer. A suitable ratio of cassava starch and rice flour to water at 10% w/v was used to form a film solution. The addition of a plasticizer agent up to 30% w/w of blending compositions improved the mechanical properties of the generated films. The mechanical properties of the edible blended films with 30% plasticizer were strongly dependent on the blending compositions. Our results pointed out that the cassava starch and rice flour films at a ratio of 70:30 with sorbitol 30% (w/w) had the highest tensile strength which related to folding endurance of the films.