Water stable mixed-matrix membranes(MMMs) were developed to help control the global warming by capturing and sequestrating carbon dioxide(CO_2) from post-combustion flue gas originated from burning of fossil fuels.MMM...Water stable mixed-matrix membranes(MMMs) were developed to help control the global warming by capturing and sequestrating carbon dioxide(CO_2) from post-combustion flue gas originated from burning of fossil fuels.MMMs of different compositions were prepared by doping glassy polymer Ultrason? S 6010(US) with nanocrystals of zeolitic imidazolate frameworks(ZIF-300) in varying degrees. Solution-casting technique was used to fabricate various MMMs to optimize their CO_2 capturing performance from both dry and wet gases. The prepared composite membranes indicated enhanced filler-polymer interfacial adhesion, consistent distribution of nanofiller, and thermally established matrix configuration. CO_2 permeability of the membranes was enhanced as demonstrated by gas sorption and permeation experiments performed under both dry and wet conditions. As compared to neat Ultrason? membrane, CO_2 permeability of the composite membrane doped with 40 wt% ZIF-300 nanocrystals was increased by four times without disturbing CO_2/N_2 ideal selectivity. In contrast to majority of previously reported membranes, key features of the fabricated MMMs include their structural stability under humid conditions coupled with better and unaffected gas separation performance.展开更多
基金KACST-Technology Innovation Center on Carbon Capture and Sequestration(CCS),King Fahd University of Petroleum and Minerals,Dhahran,Kingdom of Saudi Arabia(KSA)for providing support for this work
文摘Water stable mixed-matrix membranes(MMMs) were developed to help control the global warming by capturing and sequestrating carbon dioxide(CO_2) from post-combustion flue gas originated from burning of fossil fuels.MMMs of different compositions were prepared by doping glassy polymer Ultrason? S 6010(US) with nanocrystals of zeolitic imidazolate frameworks(ZIF-300) in varying degrees. Solution-casting technique was used to fabricate various MMMs to optimize their CO_2 capturing performance from both dry and wet gases. The prepared composite membranes indicated enhanced filler-polymer interfacial adhesion, consistent distribution of nanofiller, and thermally established matrix configuration. CO_2 permeability of the membranes was enhanced as demonstrated by gas sorption and permeation experiments performed under both dry and wet conditions. As compared to neat Ultrason? membrane, CO_2 permeability of the composite membrane doped with 40 wt% ZIF-300 nanocrystals was increased by four times without disturbing CO_2/N_2 ideal selectivity. In contrast to majority of previously reported membranes, key features of the fabricated MMMs include their structural stability under humid conditions coupled with better and unaffected gas separation performance.