针对滚动轴承早期微弱故障信号易受噪声、光滑信号影响而难以检测的问题,提出将奇异值分解(singular value decomposition,SVD)突变信息特征提取和变量预测模型模式识别(variable predictive model based class discriminate,VPMCD)方...针对滚动轴承早期微弱故障信号易受噪声、光滑信号影响而难以检测的问题,提出将奇异值分解(singular value decomposition,SVD)突变信息特征提取和变量预测模型模式识别(variable predictive model based class discriminate,VPMCD)方法相结合用于轴承故障诊断.首先采用SVD对振动信号进行分析,根据曲率谱及类间、类内最大方差比阈值,实现突变信息与背景噪声、光滑信号的有效分离;然后提取突变信息时域、频域特征参数,构建表征轴承运行状态的混合域特征向量,用于建立基于VPMCD方法的故障诊断模型.将此方法应用于轴承故障诊断,实验证明了所提方法的有效性.展开更多
文摘针对滚动轴承早期微弱故障信号易受噪声、光滑信号影响而难以检测的问题,提出将奇异值分解(singular value decomposition,SVD)突变信息特征提取和变量预测模型模式识别(variable predictive model based class discriminate,VPMCD)方法相结合用于轴承故障诊断.首先采用SVD对振动信号进行分析,根据曲率谱及类间、类内最大方差比阈值,实现突变信息与背景噪声、光滑信号的有效分离;然后提取突变信息时域、频域特征参数,构建表征轴承运行状态的混合域特征向量,用于建立基于VPMCD方法的故障诊断模型.将此方法应用于轴承故障诊断,实验证明了所提方法的有效性.