This paper deals with the initial-boundary value mixed problems for nonlinear wave equations. By introducing the 'blowing-up facts K(u,u_i)', We may discuss the blowing up behaviours of solutions in finite tim...This paper deals with the initial-boundary value mixed problems for nonlinear wave equations. By introducing the 'blowing-up facts K(u,u_i)', We may discuss the blowing up behaviours of solutions in finite time to the mixed problems with respect to Neumann boundary and Dirichlet boundary for various nonlinear conditions and initial value conditions which usually meet.展开更多
The phenomenon of mixed-mode is one of the most important characteristics of switched delay systems. If a networked control system(NCS) with network induced delays and packet dropouts(NIDs & PDs) is recast as a sw...The phenomenon of mixed-mode is one of the most important characteristics of switched delay systems. If a networked control system(NCS) with network induced delays and packet dropouts(NIDs & PDs) is recast as a switched delay system, it is imperative to consider the effects of mixed-modes in the stability analysis for an NCS. In this paper, with the help of the interpolatory quadrature formula and the average dwell time method, stabilization of NCSs using a mixed-mode based switched delay system method is investigated based on a novel constructed Lyapunov-Krasovskii functional. With the Finsler's lemma, new exponential stabilizability conditions with less conservativeness are given for the NCS. Finally, an illustrative example is provided to verify the effectiveness of the developed results.展开更多
The relatedness between catalytic effect of activated carbon and passivation phenomenon during chalcopyrite bioleachingby mixed thermophilic Archaea culture(Acidianus brierleyi,Metallosphaera sedula,Acidianus manzaens...The relatedness between catalytic effect of activated carbon and passivation phenomenon during chalcopyrite bioleachingby mixed thermophilic Archaea culture(Acidianus brierleyi,Metallosphaera sedula,Acidianus manzaensis and Sulfolobusmetallicus)at65°C was studied.Leaching experiments showed that the addition of activated carbon could significantly promote thedissolution of chalcopyrite for both bioleaching and chemical leaching.The results of synchrotron-based X-ray diffraction,ironL-edge and sulfur K-edge X-ray absorption near edge structure spectroscopy indicated that activated carbon could change thetransition path of electrons through galvanic interactions to form more readily dissolved secondary mineral chalcocite at a low redoxpotential(?400mV)and then enhanced the copper dissolution.Jarosite accumulated immediately in the initial stage of bioleachingwith activated carbon but copper dissolution was not hindered.However,much jarosite precipitated on the surface of chalcopyrite inthe late stage of bioleaching,which might account for the decrease of copper dissolution rate.More elemental sulfur(S0)was alsodetected with additional activated carbon but the mixed thermophilic Archaea culture had a great sulfur oxidation activity,thus S0waseliminated and seemed to have no significant influence on the dissolution of chalcopyrite.展开更多
An experiment was conducted and through distant hybridization a new promising forms of citruses were obtained. Namely, after hybridization of lemon Georgian and broad-leaved mandarin unshiu (mother components) with ...An experiment was conducted and through distant hybridization a new promising forms of citruses were obtained. Namely, after hybridization of lemon Georgian and broad-leaved mandarin unshiu (mother components) with early-ripening trifoliata and a hybrid of citrus ichangensis--"Caucasus" (father components) a wide range of nucellar seedlings were obtained. It should be noted that nucellar seedlings of hybrid nature are practically closer to distant hybrids of sexual origin that are sharply inclined to the side of the mother component and produce good quality fruit. Unfortunately, such hybrids are either very rare or cannot be obtained at all. While, in the case of the study, through using new combinations in hybridization, the possibility of getting nucellar seedlings of the hybrid nature is much bigger. Distant hybridization turned out to be particularly interesting because of the polyembryony of citrus plants. Due to this, it gives opportunity to get new promising forms not only from the egg cell but from nucellar cells as well.展开更多
The growth of mixing zone on an interface induced by Richtmyer-Meshkov(RM)instability occurs frequently in natural phenomena and in engineering applications.Usually,the medium on which the RM instability happens is in...The growth of mixing zone on an interface induced by Richtmyer-Meshkov(RM)instability occurs frequently in natural phenomena and in engineering applications.Usually,the medium on which the RM instability happens is inhomogeneous,the effect of medium inhomogeneity on the growth of the mixing zone during the RM instability is still not clear.Therefore,it is necessary to investigate the RM instability in inhomogeneous medium.Based on a high-order computational scheme,the interactions of a density interface with an incident shock wave(ISW)in inhomogeneous medium are numerically simulated by solving the compressible Navier-Stokes equations.The effect of the inhomogeneity on the interface evolution after the passage of ISW through the interface is investigated.The results show that the interface morphology develops in a distinctive "spike-spike"structure in inhomogeneous medium.Particularly,the spike structure on the bottom of the interface is due to the reverse induction of RM instability by curved ISW or reflected shock wave.With the increase of inhomogeneity,the growth rate of the mixing zone width on interface increases,and the wave patterns caused by interaction between the shock wave and interface are more complex.Compared with RM instability in homogeneous medium,the inhomogeneous distribution of the density in medium further enhances the baroclinic effect and induces larger vorticity in flow field.Therefore,the interface is stretched much more significantly under the induction of enhanced vorticity in inhomogeneous medium.Based on above analyses,a model for predicting the growth of mixing zone width on the interface after the passage of ISW is proposed,in order to provide a useful method for evaluations of perturbation growth behavior during the RM instability in inhomogeneous medium.展开更多
文摘This paper deals with the initial-boundary value mixed problems for nonlinear wave equations. By introducing the 'blowing-up facts K(u,u_i)', We may discuss the blowing up behaviours of solutions in finite time to the mixed problems with respect to Neumann boundary and Dirichlet boundary for various nonlinear conditions and initial value conditions which usually meet.
基金supported by the National Natural Science Foundation of China(61573230,61473034,51777012)Beijing Nova Programme Interdisciplinary Cooperation Project(Z161100004916041)
文摘The phenomenon of mixed-mode is one of the most important characteristics of switched delay systems. If a networked control system(NCS) with network induced delays and packet dropouts(NIDs & PDs) is recast as a switched delay system, it is imperative to consider the effects of mixed-modes in the stability analysis for an NCS. In this paper, with the help of the interpolatory quadrature formula and the average dwell time method, stabilization of NCSs using a mixed-mode based switched delay system method is investigated based on a novel constructed Lyapunov-Krasovskii functional. With the Finsler's lemma, new exponential stabilizability conditions with less conservativeness are given for the NCS. Finally, an illustrative example is provided to verify the effectiveness of the developed results.
基金Project(51274257) supported by the National Natural Science Foundation of ChinaProject(U1232103) supported by the Joint Funds of National Natural Science Foundation of China and Large Scientific Facility Foundation of Chinese Academy of Sciences+1 种基金Project(VR-12419) supported by the Beijing Synchrotron Radiation Facility Public User Program,ChinaProject(15ssrf00924) supported by the Shanghai Institute of Applied Physics Open Fund of Shanghai Synchrotron Radiation Facility,China
文摘The relatedness between catalytic effect of activated carbon and passivation phenomenon during chalcopyrite bioleachingby mixed thermophilic Archaea culture(Acidianus brierleyi,Metallosphaera sedula,Acidianus manzaensis and Sulfolobusmetallicus)at65°C was studied.Leaching experiments showed that the addition of activated carbon could significantly promote thedissolution of chalcopyrite for both bioleaching and chemical leaching.The results of synchrotron-based X-ray diffraction,ironL-edge and sulfur K-edge X-ray absorption near edge structure spectroscopy indicated that activated carbon could change thetransition path of electrons through galvanic interactions to form more readily dissolved secondary mineral chalcocite at a low redoxpotential(?400mV)and then enhanced the copper dissolution.Jarosite accumulated immediately in the initial stage of bioleachingwith activated carbon but copper dissolution was not hindered.However,much jarosite precipitated on the surface of chalcopyrite inthe late stage of bioleaching,which might account for the decrease of copper dissolution rate.More elemental sulfur(S0)was alsodetected with additional activated carbon but the mixed thermophilic Archaea culture had a great sulfur oxidation activity,thus S0waseliminated and seemed to have no significant influence on the dissolution of chalcopyrite.
文摘An experiment was conducted and through distant hybridization a new promising forms of citruses were obtained. Namely, after hybridization of lemon Georgian and broad-leaved mandarin unshiu (mother components) with early-ripening trifoliata and a hybrid of citrus ichangensis--"Caucasus" (father components) a wide range of nucellar seedlings were obtained. It should be noted that nucellar seedlings of hybrid nature are practically closer to distant hybrids of sexual origin that are sharply inclined to the side of the mother component and produce good quality fruit. Unfortunately, such hybrids are either very rare or cannot be obtained at all. While, in the case of the study, through using new combinations in hybridization, the possibility of getting nucellar seedlings of the hybrid nature is much bigger. Distant hybridization turned out to be particularly interesting because of the polyembryony of citrus plants. Due to this, it gives opportunity to get new promising forms not only from the egg cell but from nucellar cells as well.
文摘The growth of mixing zone on an interface induced by Richtmyer-Meshkov(RM)instability occurs frequently in natural phenomena and in engineering applications.Usually,the medium on which the RM instability happens is inhomogeneous,the effect of medium inhomogeneity on the growth of the mixing zone during the RM instability is still not clear.Therefore,it is necessary to investigate the RM instability in inhomogeneous medium.Based on a high-order computational scheme,the interactions of a density interface with an incident shock wave(ISW)in inhomogeneous medium are numerically simulated by solving the compressible Navier-Stokes equations.The effect of the inhomogeneity on the interface evolution after the passage of ISW through the interface is investigated.The results show that the interface morphology develops in a distinctive "spike-spike"structure in inhomogeneous medium.Particularly,the spike structure on the bottom of the interface is due to the reverse induction of RM instability by curved ISW or reflected shock wave.With the increase of inhomogeneity,the growth rate of the mixing zone width on interface increases,and the wave patterns caused by interaction between the shock wave and interface are more complex.Compared with RM instability in homogeneous medium,the inhomogeneous distribution of the density in medium further enhances the baroclinic effect and induces larger vorticity in flow field.Therefore,the interface is stretched much more significantly under the induction of enhanced vorticity in inhomogeneous medium.Based on above analyses,a model for predicting the growth of mixing zone width on the interface after the passage of ISW is proposed,in order to provide a useful method for evaluations of perturbation growth behavior during the RM instability in inhomogeneous medium.