为增强生物地理学优化算法(biogeography-based optimization,BBO)的优化能力并克服其不能很好平衡开发能力与避免陷入局部最优解之间的矛盾,提出基于微扰动和混合变异的差分生物地理学优化算法(differential biogeography optimization...为增强生物地理学优化算法(biogeography-based optimization,BBO)的优化能力并克服其不能很好平衡开发能力与避免陷入局部最优解之间的矛盾,提出基于微扰动和混合变异的差分生物地理学优化算法(differential biogeography optimization algorithm based on micro-perturbation and mixed variation,MDEBBO)。引入差分变异算子和自适应的微扰动因子来改进迁移算子,使算法朝着最优解快速移动,提高算法的查找精度。采用混合变异算子代替原变异算子,在迭代前期算法具有良好的全局探索能力,在后期具有较优的局部开发性。基准测试函数的仿真结果表明了MDEBBO算法的有效性。通过MDEBBO算法对Richards模型进行参数估计预测谷氨酸菌体生长浓度,实验结果表明,MDEBBO算法较对比算法更适用于Richards模型的参数估计。展开更多
针对生物地理学优化算法(biogeography based optimization,BBO)容易陷入局部最优解的缺点,提出一种基于微分进化(differential evolution,DE)改进BBO算法的混合生物地理学(BBO-DE)优化算法。通过有机结合BBO算法的利用能力和DE算法的...针对生物地理学优化算法(biogeography based optimization,BBO)容易陷入局部最优解的缺点,提出一种基于微分进化(differential evolution,DE)改进BBO算法的混合生物地理学(BBO-DE)优化算法。通过有机结合BBO算法的利用能力和DE算法的搜索能力,实现利用能力与搜索能力的平衡;引入基于可行性的约束处理机制,解决传统BBO算法无法求解约束优化的问题。通过选定的8个标准测试函数对改进算法进行仿真测试,测试结果验证了改进算法的可行性和有效性,与基本BBO和DE算法相比,其在最终解的质量和收敛速度上具有明显优势。展开更多
文摘为增强生物地理学优化算法(biogeography-based optimization,BBO)的优化能力并克服其不能很好平衡开发能力与避免陷入局部最优解之间的矛盾,提出基于微扰动和混合变异的差分生物地理学优化算法(differential biogeography optimization algorithm based on micro-perturbation and mixed variation,MDEBBO)。引入差分变异算子和自适应的微扰动因子来改进迁移算子,使算法朝着最优解快速移动,提高算法的查找精度。采用混合变异算子代替原变异算子,在迭代前期算法具有良好的全局探索能力,在后期具有较优的局部开发性。基准测试函数的仿真结果表明了MDEBBO算法的有效性。通过MDEBBO算法对Richards模型进行参数估计预测谷氨酸菌体生长浓度,实验结果表明,MDEBBO算法较对比算法更适用于Richards模型的参数估计。
文摘针对生物地理学优化算法(biogeography based optimization,BBO)容易陷入局部最优解的缺点,提出一种基于微分进化(differential evolution,DE)改进BBO算法的混合生物地理学(BBO-DE)优化算法。通过有机结合BBO算法的利用能力和DE算法的搜索能力,实现利用能力与搜索能力的平衡;引入基于可行性的约束处理机制,解决传统BBO算法无法求解约束优化的问题。通过选定的8个标准测试函数对改进算法进行仿真测试,测试结果验证了改进算法的可行性和有效性,与基本BBO和DE算法相比,其在最终解的质量和收敛速度上具有明显优势。