期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
大变化灵敏度问题的研究——混合矩阵法程序设计
1
作者 郑焕群 李蓉 王予宏 《计算机工程与设计》 CSCD 北大核心 1993年第4期16-24,共9页
本文给出一种计算大变化灵敏度的方法,该方法功能全,应用广泛,并给出软件系统的研制报告。它能分析电阻(线性、非线性),电导,电容(线性,非线性),和电感(线性,非线性),以及4种受控源器件。可以应用于多种元件类型大变化灵敏度的电路的计算。
关键词 电路分析 混合矩阵法 大变化灵敏度 程序设计
下载PDF
传递矩阵法在计算输流管路高频振动时的稳定性改进 被引量:1
2
作者 曹银行 柳贡民 胡志 《振动与冲击》 EI CSCD 北大核心 2024年第2期138-145,共8页
传递矩阵法(transfer matrix method,TMM)是研究结构振动时常用的计算方法,但在计算大跨度输流管路高频横向振动时,TMM存在数值不稳定的现象,制约了其进一步应用。基于无量纲化计算结果得到的子单元划分准则的全局传递矩阵法(global tra... 传递矩阵法(transfer matrix method,TMM)是研究结构振动时常用的计算方法,但在计算大跨度输流管路高频横向振动时,TMM存在数值不稳定的现象,制约了其进一步应用。基于无量纲化计算结果得到的子单元划分准则的全局传递矩阵法(global transfer matrix method,GTMM)、混合能传递矩阵法(hybrid energy transfer matrix method,HETMM)和结合变精度算法的传递矩阵法(variable precision algorithm-transfer matrix method,VPA-TMM)等三种方法解决了这一问题。GTMM是最常用的TMM计算稳定性改进方法;HETMM系首次从层状介质中的波传播计算扩展到管路系统的振动分析领域,计算矩阵的维度和形式不随子单元数的变化而变化,计算时间最短;VPA-TMM无需进行子单元划分,可以看作是从根源上解决了TMM的长跨度高频计算失稳问题,但计算时间会大幅度增加。 展开更多
关键词 传递阵法(TMM) 高频计算失稳 全局传递阵法(GTMM) 混合能传递阵法(HETMM) 变精度算法(VPA)
下载PDF
Underdetermined Blind Source Separation of Adjacent Satellite Interference Based on Sparseness 被引量:10
3
作者 Chengjie Li Lidong Zhu Zhongqiang Luo 《China Communications》 SCIE CSCD 2017年第4期140-149,共10页
The problem of underdetermined blind source separation of adjacent satellite interference is proposed in this paper. Density Clustering algorithm(DC-algorithm) presented in this article is different from traditional m... The problem of underdetermined blind source separation of adjacent satellite interference is proposed in this paper. Density Clustering algorithm(DC-algorithm) presented in this article is different from traditional methods. Sparseness representation has been applied in underdetermined blind signal source separation. However, some difficulties have not been considered, such as the number of sources is unknown or the mixed matrix is ill-conditioned. In order to find out the number of the mixed signals, Short Time Fourier Transform(STFT) is employed to segment received mixtures. Then, we formulate the blind source signal as cluster problem. Furthermore, we construct Cost Function Pair and Decision Coordinate System by using density clustering. At the end of this paper, we discuss the performance of the proposed method and verify the novel method based on several simulations. We verify the proposed method on numerical experiments with real signal transmission, which demonstrates the validity of the proposed method. 展开更多
关键词 adjacent satellite interference Short Time Fourier Transform Decision Coordinate System real signal transmission
下载PDF
Mixing matrix estimation of underdetermined blind source separation based on the linear aggregation characteristic of observation signals
4
作者 温江涛 Zhao Qianyun Sun Jiedi 《High Technology Letters》 EI CAS 2016年第1期82-89,共8页
Under the underdetermined blind sources separation(UBSS) circumstance,it is difficult to estimate the mixing matrix with high-precision because of unknown sparsity of signals.The mixing matrix estimation is proposed b... Under the underdetermined blind sources separation(UBSS) circumstance,it is difficult to estimate the mixing matrix with high-precision because of unknown sparsity of signals.The mixing matrix estimation is proposed based on linear aggregation degree of signal scatter plot without knowing sparsity,and the linear aggregation degree evaluation of observed signals is presented which obeys generalized Gaussian distribution(GGD).Both the GGD shape parameter and the signals' correlation features affect the observation signals sparsity and further affected the directionality of time-frequency scatter plot.So a new mixing matrix estimation method is proposed for different sparsity degrees,which especially focuses on unclear directionality of scatter plot and weak linear aggregation degree.Firstly,the direction of coefficient scatter plot by time-frequency transform is improved and then the single source coefficients in the case of weak linear clustering is processed finally the improved K-means clustering is applied to achieve the estimation of mixing matrix.The proposed algorithm reduces the requirements of signals sparsity and independence,and the mixing matrix can be estimated with high accuracy.The simulation results show the feasibility and effectiveness of the algorithm. 展开更多
关键词 underdetermined blind source separation (UBSS) sparse component analysis(SCA) mixing matrix estimation generalized Gaussian distribution (GGD) linear aggregation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部