针对二极管中点钳位型(neutral point clamped,NPC)三电平逆变器容易造成直流侧电容电压不平衡问题,提出一种新的中点电位平衡控制方法。在该方法中,采用分扇区精细控制,对不同的小矢量设置不同的时间分配因子,以增加相应正或负小矢量...针对二极管中点钳位型(neutral point clamped,NPC)三电平逆变器容易造成直流侧电容电压不平衡问题,提出一种新的中点电位平衡控制方法。在该方法中,采用分扇区精细控制,对不同的小矢量设置不同的时间分配因子,以增加相应正或负小矢量对中点电流的控制能力。对于正负小矢量不能成对出现的扇区,根据相电流的变化情况,使调制在传统算法和基于虚拟矢量的算法之间切换,从而削弱中矢量对中点电流不可控的影响。仿真和实验证实了该方法的正确性和有效性。展开更多
The mathematical model of the modem induction traction motor (TRIM and cutting magnetic circuit traction motor), supplied with IPM inverter with different control technique is presented in the paper. In electric and...The mathematical model of the modem induction traction motor (TRIM and cutting magnetic circuit traction motor), supplied with IPM inverter with different control technique is presented in the paper. In electric and hybrid vehicle are applied: FLMC (Fuzzy Logic Mode Control), SLMC (Sliding Mode Control), NRMC (Neural Regulator Control), and Direct Power and Torque Control for Space Vector Modulated inverter (DPTC SVM). In the special solution of the electric and hybrid vehicle are also applied a Random Switching Frequency Modulation. The control of hybrid vehicle should assure the realization of established transport-assignments in the definite time, at the optimum of energy consumption. One can this realize using. The multi criteria control system. Some results of the computer simulations are presented in the paper. Results of numerical calculation were verified for laboratory model of the electric and hybrid wheel vehicles traction motor.展开更多
文摘针对二极管中点钳位型(neutral point clamped,NPC)三电平逆变器容易造成直流侧电容电压不平衡问题,提出一种新的中点电位平衡控制方法。在该方法中,采用分扇区精细控制,对不同的小矢量设置不同的时间分配因子,以增加相应正或负小矢量对中点电流的控制能力。对于正负小矢量不能成对出现的扇区,根据相电流的变化情况,使调制在传统算法和基于虚拟矢量的算法之间切换,从而削弱中矢量对中点电流不可控的影响。仿真和实验证实了该方法的正确性和有效性。
文摘The mathematical model of the modem induction traction motor (TRIM and cutting magnetic circuit traction motor), supplied with IPM inverter with different control technique is presented in the paper. In electric and hybrid vehicle are applied: FLMC (Fuzzy Logic Mode Control), SLMC (Sliding Mode Control), NRMC (Neural Regulator Control), and Direct Power and Torque Control for Space Vector Modulated inverter (DPTC SVM). In the special solution of the electric and hybrid vehicle are also applied a Random Switching Frequency Modulation. The control of hybrid vehicle should assure the realization of established transport-assignments in the definite time, at the optimum of energy consumption. One can this realize using. The multi criteria control system. Some results of the computer simulations are presented in the paper. Results of numerical calculation were verified for laboratory model of the electric and hybrid wheel vehicles traction motor.