期刊文献+
共找到1,235篇文章
< 1 2 62 >
每页显示 20 50 100
基于自适应混合粒子群算法优化支持向量机的乳腺癌预测
1
作者 王勇 吴慕云 《阜阳职业技术学院学报》 2024年第2期67-70,共4页
使用粒子群算法优化支持向量机的惩罚因子和核参数,提高分类的精度。粒子群算法收敛速度快,但是容易陷入局部最优。引入鲸鱼算法的包围运动和螺旋运动机制,形成参数自适应的混合粒子群优化算法,提升了算法的精度。在对数据进行预处理之... 使用粒子群算法优化支持向量机的惩罚因子和核参数,提高分类的精度。粒子群算法收敛速度快,但是容易陷入局部最优。引入鲸鱼算法的包围运动和螺旋运动机制,形成参数自适应的混合粒子群优化算法,提升了算法的精度。在对数据进行预处理之后,80%的数据用于模型的训练,剩余20%用于模型的测试。每次实验分别按照比例随机生成的训练集和测试集进行20次预测,计算平均正确率。实验表明,自适应混合粒子群算法优化精度高于标准粒子群算法和鲸鱼算法。 展开更多
关键词 乳腺癌 支持向量 自适应 粒子优化算法
下载PDF
基于粒子群优化支持向量机的纱线质量预测 被引量:1
2
作者 章军辉 陈明亮 +2 位作者 郭晓满 付宗杰 王静贤 《棉纺织技术》 CAS 2024年第4期16-22,共7页
针对复杂纺纱过程中成纱质量预测精度不足以及深度学习对庞大数据集依赖性的缺陷,提出一种基于粒子群算法优化支持向量机的小样本成纱质量预测方法。首先,对原始数据集样本序列进行灰色关联预处理,按照关联度大小进行排序,再结合先验知... 针对复杂纺纱过程中成纱质量预测精度不足以及深度学习对庞大数据集依赖性的缺陷,提出一种基于粒子群算法优化支持向量机的小样本成纱质量预测方法。首先,对原始数据集样本序列进行灰色关联预处理,按照关联度大小进行排序,再结合先验知识库筛选出主要的原棉纤维指标;其次,针对小样本预测问题,建立了线性核、多项式核、高斯核以及自适应带宽RBF核等不同核函数支持向量回归(SVR)预测模型;最后,采用粒子群优化(PSO)算法对高斯核SVR模型的超参数(正则化系数和带宽调节参数)进行辨识,设计一种综合适应度函数与线性递减惯性权重策略,用以提高PSO算法的寻优能力。仿真结果表明:PSO优化高斯核SVR模型对不同成纱质量指标有较好的预测效果,其平均相对误差不超过2%。认为:PSO优化高斯核SVR模型对成纱质量指标的预测误差较低,具有良好的适应性。 展开更多
关键词 支持向量 粒子优化 灰色关联 纱线质量预测 核函数
下载PDF
基于粒子群优化支持向量机的地下洞室支护设计
3
作者 侯德俊 梁熙文 +1 位作者 张昊辰 韩君格 《西北水电》 2024年第3期101-107,共7页
水电站地下洞室支护设计因其环境复杂性而面临重大挑战,现有方案受限于主观经验和低精度等问题,难以满足设计需求。为提高地下洞室设计效率和可靠性,通过引入粒子群优化(PSO)优化支持向量机(SVM)参数,开发地下洞室支护智能设计模型。模... 水电站地下洞室支护设计因其环境复杂性而面临重大挑战,现有方案受限于主观经验和低精度等问题,难以满足设计需求。为提高地下洞室设计效率和可靠性,通过引入粒子群优化(PSO)优化支持向量机(SVM)参数,开发地下洞室支护智能设计模型。模型将洞室跨度、洞室高度、洞室高跨比、洞室埋深、围岩类别、岩石饱和单轴抗压强度、最大主应力值、岩石强度应力比作为输入指标。通过对100个国内外水电站地下洞室支护案例的训练测试。结果表明:该模型在各项输出指标上显示了高度准确性,其中喷混厚度、锚杆直径、锚杆间排距的定类准确率分别达到90%、85%、90%,锚杆长度的定量预测拟合优度为0.843。研究成果可为地下洞室支护设计提供一种新方法。 展开更多
关键词 地下洞室 支护设计 粒子优化 支持向量
下载PDF
基于粒子群优化和最小二乘支持向量机的储罐腐蚀速率预测
4
作者 王明慧 党鹏飞 +1 位作者 杨铮鑫 龚博 《腐蚀与防护》 CAS CSCD 北大核心 2024年第8期71-76,共6页
利用粒子群优化(PSO)算法的全局寻优能力,对最小二乘支持向量机(LSSVM)的正则化参数和核参数进行优化,提出了基于PSO-LSSVM的大型储罐腐蚀速率的预测方法。采用该方法对储罐腐蚀速率进行预测,并利用实测数据对模型的预测精度进行验证。... 利用粒子群优化(PSO)算法的全局寻优能力,对最小二乘支持向量机(LSSVM)的正则化参数和核参数进行优化,提出了基于PSO-LSSVM的大型储罐腐蚀速率的预测方法。采用该方法对储罐腐蚀速率进行预测,并利用实测数据对模型的预测精度进行验证。结果表明:使用PSOLSSVM获得的腐蚀速率预测结果与实际腐蚀速率较为吻合,罐顶、第一层罐壁、罐底预测结果的平均绝对百分误差分别为2.265%、3.077%、1.18%,均方根误差分别为0.010%、0.012%、0.011%,决定系数分别为0.973、0.982、0.976。该方法可以对储罐内腐蚀速率进行有效的预测。 展开更多
关键词 粒子优化(PSO) 最小二乘支持向量(LSSVM) 腐蚀速率预测
下载PDF
基于混沌粒子群改进支持向量机对露天矿边坡稳定性的分类预测
5
作者 赵国彦 邹景煜 王猛 《矿冶工程》 CAS 北大核心 2024年第2期8-12,共5页
为了简便有效地评估边坡稳定性状态,针对目前传统机器学习的算法选择与超参数优化等难题,提出了基于混沌粒子群优化算法的4种机器学习模型,并对其预测性能进行了对比。建立了包含221组露天矿边坡稳定性案例的数据库,其中80%的数据用于训... 为了简便有效地评估边坡稳定性状态,针对目前传统机器学习的算法选择与超参数优化等难题,提出了基于混沌粒子群优化算法的4种机器学习模型,并对其预测性能进行了对比。建立了包含221组露天矿边坡稳定性案例的数据库,其中80%的数据用于训练,20%的数据用于模型测试。4种模型预测结果及工程实例验证结果表明,基于混沌粒子群改进支持向量机模型的预测效果上总体优于其他3种机器学习模型,预测准确率88%,能够有效预测边坡稳定性,可为露天矿边坡安全提供可靠的预测结果。 展开更多
关键词 边坡稳定性 混沌粒子优化 支持向量 预测
下载PDF
基于粒子群优化最小二乘支持向量机的交通事故预测方法
6
作者 韦凌翔 赵洪旭 +2 位作者 赵鹏飞 钟栋青 陈天昊 《交通工程》 2023年第4期94-99,共6页
为解决交通事故预测中非线性样本影响预测精度的问题,本文构建了基于粒子群算法(PSO)优化的最小二乘支持向量机(LSSVM)的交通事故预测方法.在构建交通事故数LSSVM预测模型的基础上,采用PSO算法优化LSSVM的惩罚系数和核函数宽度;设计了... 为解决交通事故预测中非线性样本影响预测精度的问题,本文构建了基于粒子群算法(PSO)优化的最小二乘支持向量机(LSSVM)的交通事故预测方法.在构建交通事故数LSSVM预测模型的基础上,采用PSO算法优化LSSVM的惩罚系数和核函数宽度;设计了基于粒子群优化最小二乘支持向量机的交通事故预测模型;最后以我国连续48个月的道路交通事故数据建立模型,验证了该预测方法的有效性.实验结果表明:PSO优化LSSVM的交通事故模型比使用经验参数的LSSVM预测模型的预测效果更好.是准确预测交通事故的方法. 展开更多
关键词 交通安全 交通事故 最小二乘支持向量(LSSVM) 粒子优化算法(PSO) 预测模型
下载PDF
基于组合赋权的混合粒子群优化支持向量机的岩爆倾向性预测 被引量:13
7
作者 温廷新 陈晓宇 《安全与环境学报》 CAS CSCD 北大核心 2018年第2期440-445,共6页
为有效预测岩爆灾害发生烈度,提出一种基于组合赋权的混合粒子群优化支持向量机(H-PSO-SVM)岩爆倾向性预测模型。根据岩爆发生机制,在分析岩爆发生的主要影响因素的基础上确定出评判指标;综合考虑模糊层次分析法(FAHP)所得主观权重... 为有效预测岩爆灾害发生烈度,提出一种基于组合赋权的混合粒子群优化支持向量机(H-PSO-SVM)岩爆倾向性预测模型。根据岩爆发生机制,在分析岩爆发生的主要影响因素的基础上确定出评判指标;综合考虑模糊层次分析法(FAHP)所得主观权重和熵权法所得客观权重,应用调和平均数概念,构建组合赋权准则;引入遗传算法交叉、变异操作改进传统粒子群(PSO)极值跟踪和粒子更新方法,建立H-PSO-SVM岩爆倾向性预测模型。利用国内外已有工程实例数据进行50次随机抽样试验,对比分析H-PSO-SVM模型和PSO-SVM模型等预测结果。结果表明:H-PSO-SVM模型应用于岩爆工程实例预测具有可行性和适应性,模型预测的准确率高于其他模型,且预测结果更稳定。 展开更多
关键词 安全工程 岩爆倾向性预测 组合赋权 混合粒子优化支持向量(h-pso-svm)
下载PDF
基于粒子群优化的最小二乘支持向量机在混合气体定量分析中的应用 被引量:22
8
作者 李玉军 汤晓君 刘君华 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2010年第3期774-778,共5页
针对混合气体建模过程中最小二乘支持向量机参数难以确定及红外光谱数据计算量过大的问题,提出一种粒子群优化的最小二乘支持向量机方法,用于建立基于主成分分析特征提取的红外光谱多组分气体定量分析模型。首先对主吸收峰区域的550个... 针对混合气体建模过程中最小二乘支持向量机参数难以确定及红外光谱数据计算量过大的问题,提出一种粒子群优化的最小二乘支持向量机方法,用于建立基于主成分分析特征提取的红外光谱多组分气体定量分析模型。首先对主吸收峰区域的550个红外光谱数据利用主成分分析技术进行了特征提取,将降维得到的7个特征值作为模型的输入变量从而有效地降低了计算量。混合气体主要由浓度范围分别是0.1%~1%的甲烷、乙烷及0.1%~1.5%的丙烷三种组分气体组成。采用最小二乘支持向量机技术分别建立了各组分气体的定量分析模型,利用粒子群优化算法对最小二乘支持向量机算法中的参数进行了优化选取,取代了传统的遍历优化方法,然后利用取得的最优参数重建定量分析模型。实验结果表明,采用此方法离线建模所用时间比采用遍历优化方法节省40倍以上,预测结果误差水平相当,满足实测要求。粒子群优化算法在全局优化及收敛速度方面具有较大优势。粒子群优化算法与最小二乘支持向量机技术相结合用于混合气体定量分析是切实可行的,具有一定的实际意义和应用价值。 展开更多
关键词 红外光谱 粒子优化算法 最小二乘支持向量 定量分析 混合气体 主成分分析
下载PDF
基于PSO优化双子支持向量机的电商经济预测研究
9
作者 巢瑞云 刘源 《贵阳学院学报(自然科学版)》 2024年第2期11-15,42,共6页
为提高电商经济预测性能,解决因时序复杂、特征量多及用户需求复杂等带来的预测精度偏低的问题,采用双子支持向量机进行电商经济预测。首先,获取电商经济数据特征,接着构建双子支持向量机(TWSVM)的电商经济预测模型,提取TWSVM的正则因... 为提高电商经济预测性能,解决因时序复杂、特征量多及用户需求复杂等带来的预测精度偏低的问题,采用双子支持向量机进行电商经济预测。首先,获取电商经济数据特征,接着构建双子支持向量机(TWSVM)的电商经济预测模型,提取TWSVM的正则因子等参数,随机初始化多组参数,并构建多个粒子。然后借助粒子群优化(PSO)算法搜索最优TWSVM参数,以生成适合电商经济预测的最佳TWSVM模型,通过PSO优化获得最优TWSVM参数。最后采用最佳TWSVM模型进行电商经济预测,并对预测结果进行评价。在实例仿真中,以电商经济销售金额和增长率两个指标为主,PSO优化的TWSVM算法的预测准确度均高于90%。 展开更多
关键词 电商经济 双子支持向量 粒子优化 超平面
下载PDF
基于粒子群优化最小二乘支持向量机的城市货运生成预测模型——以合肥都市圈为例
10
作者 李盈 何流 《交通与港航》 2023年第4期28-34,共7页
城市货运量预测是一个复杂的非线性过程。该文提出一种基于粒子群(PSO)优化最小二乘支持向量机(LSSVM)的城市货运生成预测模型。首先选取社会经济、工业、地理特征作为货运量主要影响因素;其次利用PSO算法优化LSSVM特征参数,提高LSSVM... 城市货运量预测是一个复杂的非线性过程。该文提出一种基于粒子群(PSO)优化最小二乘支持向量机(LSSVM)的城市货运生成预测模型。首先选取社会经济、工业、地理特征作为货运量主要影响因素;其次利用PSO算法优化LSSVM特征参数,提高LSSVM准确率;最后以合肥都市圈2014—2020年数据为例,验证该方法的有效性。LSSVM预测平均相对误差为26%,PSO算法优化LSSVM预测平均相对误差为12%。实验结果表明,基于PSO算法优化LSSVM的城市货运生成预测模型具有较高预测精度,能够有效揭示货运量与相关变量间的非线性映射关系。 展开更多
关键词 需求预测模型 城市货运生成 最小二乘支持向量 粒子优化
下载PDF
基于量子粒子群混合烟花优化支持向量机的软件缺陷预测研究 被引量:5
11
作者 崔梦天 龙松林 +3 位作者 赵城斌 吴克奇 姜玥 谢琪 《西南民族大学学报(自然科学版)》 CAS 2022年第6期653-659,共7页
开源软件缺陷问题是目前软件工程领域一个非常重要的研究领域,为了避免由于软件缺陷而引发的故障,如何识别和预测软件系统中存在的缺陷也是目前一个重要研究课题.针对上述现状和问题,提出了量子粒子群混合烟花优化算法,用于对支持向量... 开源软件缺陷问题是目前软件工程领域一个非常重要的研究领域,为了避免由于软件缺陷而引发的故障,如何识别和预测软件系统中存在的缺陷也是目前一个重要研究课题.针对上述现状和问题,提出了量子粒子群混合烟花优化算法,用于对支持向量机进行参数寻优,将两种算法进行并联式融合,从而达到更好的寻优效果.其次,为验证提出方法的有效性,在NASA MDP数据集上进行仿真实验,将量子粒子群算法、混合烟花算法的量子粒子群算法用于SVM的参数寻优,并且与经典的SVM之间进行对比,证明其有效性.仿真实验结果表明,提出的基于量子粒子群混合烟花算法优化支持向量机软件缺陷预测模型的综合性能要优于其他模型,提出的量子粒子群混合烟花算法对量子粒子群跳出局部最优的能力有较大程度的提高. 展开更多
关键词 软件缺陷预测 支持向量 量子粒子 烟花算法 混合优化算法
下载PDF
基于多分类最小二乘支持向量机和改进粒子群优化算法的电力变压器故障诊断方法 被引量:122
12
作者 郑含博 王伟 +3 位作者 李晓纲 王立楠 李予全 韩金华 《高电压技术》 EI CAS CSCD 北大核心 2014年第11期3424-3429,共6页
为了提高故障诊断的准确率,提出了一种多分类最小二乘支持向量机(LS-SVM)和改进粒子群优化(PSO)相结合的电力变压器故障诊断方法。引入最小输出编码构造多个2分类LS-SVM,实现了变压器诊断的多类分类。利用PSO算法获得LS-SVM诊断模型的... 为了提高故障诊断的准确率,提出了一种多分类最小二乘支持向量机(LS-SVM)和改进粒子群优化(PSO)相结合的电力变压器故障诊断方法。引入最小输出编码构造多个2分类LS-SVM,实现了变压器诊断的多类分类。利用PSO算法获得LS-SVM诊断模型的最优参数,并采用交叉验证原理来提高分类算法的整体泛化性能。实例分析结果表明,采用LS-SVM和PSO算法可以准确、有效地对变压器进行故障诊断;与传统的电力变压器故障诊断方法相比,该方法的诊断准确率更高。 展开更多
关键词 最小二乘支持向量 多类分类 粒子优化 故障诊断 电力变压器 准确率
下载PDF
基于粒子群优化算法的支持向量机参数选择及其应用 被引量:128
13
作者 邵信光 杨慧中 陈刚 《控制理论与应用》 EI CAS CSCD 北大核心 2006年第5期740-743,748,共5页
参数选择是支持向量机(SVM)研究领域的重要问题,它的本质是一个优化搜索过程,考虑到进化算法在求解优化问题上的有效性,提出了以最小化k-fold交叉验证误差为目标.粒子群优化(PSO)算法为寻优技巧的SVM参数调整方法.通过仿真例子验证该... 参数选择是支持向量机(SVM)研究领域的重要问题,它的本质是一个优化搜索过程,考虑到进化算法在求解优化问题上的有效性,提出了以最小化k-fold交叉验证误差为目标.粒子群优化(PSO)算法为寻优技巧的SVM参数调整方法.通过仿真例子验证该方法的有效性后,用其建立了聚丙烯腈生产过程中数均分子量的软测量模型,结果表明该方法有效. 展开更多
关键词 支持向量 参数选择 粒子优化 聚丙烯腈 软测量
下载PDF
一种自主核优化的二值粒子群优化–多核学习支持向量机变压器故障诊断方法 被引量:24
14
作者 尹玉娟 王媚 +3 位作者 张金江 袁鹏 詹俊鹏 郭创新 《电网技术》 EI CSCD 北大核心 2012年第7期249-254,共6页
支持向量机(support vector machine,SVM)对于核函数及模型参数十分敏感,多核学习可降低模型的参数敏感性。提出了基于二值粒子群优化(binary particle swarmoptimization,BPSO)的多核学习SVM分类方法(BPSO-MKSVC)进行变压器故障诊断。... 支持向量机(support vector machine,SVM)对于核函数及模型参数十分敏感,多核学习可降低模型的参数敏感性。提出了基于二值粒子群优化(binary particle swarmoptimization,BPSO)的多核学习SVM分类方法(BPSO-MKSVC)进行变压器故障诊断。多核学习支持向量机(multi-kernel support vector classifier,MKSVC)采用由多个基核线性组合的多核进行学习,其中每一个基核完成从特定样本空间提取故障特征,通过多面故障特征的线性组合,将学习分类问题转化为相应的凸规划问题进行迭代求解。采用BPSO优化算法对MKSVC中的基核数及模型参数进行优化,实现了参数的自主选择。与常用诊断算法相比,BPSO-MKSVC具有更高的诊断精度;与PSO优化的SVM方法相比,其具有更低的参数敏感性和更好的鲁棒性。 展开更多
关键词 溶解气体分析 支持向量 多核学习 二值粒子优化 故障诊断 变压器
下载PDF
基于自适应扰动量子粒子群算法参数优化的支持向量回归机短期风电功率预测 被引量:47
15
作者 陈道君 龚庆武 +2 位作者 金朝意 张静 王定美 《电网技术》 EI CSCD 北大核心 2013年第4期974-980,共7页
智能电网的建设和大规模风电接入电网对短期风电功率预测精度提出了更高的要求。为了克服支持向量回归机(support vector regression machine,SVR)依赖人为经验选择学习参数的弊端,在量子粒子群优化(quantum-behaved particle swarm opt... 智能电网的建设和大规模风电接入电网对短期风电功率预测精度提出了更高的要求。为了克服支持向量回归机(support vector regression machine,SVR)依赖人为经验选择学习参数的弊端,在量子粒子群优化(quantum-behaved particle swarm optimization,QPSO)算法中加入自适应早熟判定准则、混合扰动算子和动态扩张收缩系数,提出了自适应扰动量子粒子群优化算法(adaptive disturbance quantum-behaved particle swarm optimization,ADQPSO),并使用ADQPSO优化选择SVR的学习参数。实例研究表明,ADQPSO算法全局寻优能力强、鲁棒性好、计算耗时短,利用ADQPSO优化得到的SVR参数,可有效提高模型的预测精度;与反向传播神经网络(back propagation neural network,BPNN)和径向基神经网络(radial basis functionneural network,RBFNN)相比,提出的ADQPSO-SVR能够提高短期风电功率预测的准确性和稳定性。 展开更多
关键词 短期风电功率预测 学习参数选择 自适应扰动量子粒子优化算法 支持向量回归
下载PDF
基于粗糙集和粒子群优化支持向量机的滑坡变形预测 被引量:28
16
作者 赵艳南 牛瑞卿 +1 位作者 彭令 程温鸣 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第6期2324-2332,共9页
以三峡库区白水河滑坡为例,首先分析降雨量与库水位等影响因素与滑坡变形特征的响应关系,然后利用粗糙集理论对10个初始影响因子进行属性约减,筛选出影响滑坡变形的核因子集,最后基于该因子集建立粒子群优化支持向量回归模型,对滑坡位... 以三峡库区白水河滑坡为例,首先分析降雨量与库水位等影响因素与滑坡变形特征的响应关系,然后利用粗糙集理论对10个初始影响因子进行属性约减,筛选出影响滑坡变形的核因子集,最后基于该因子集建立粒子群优化支持向量回归模型,对滑坡位移速率进行预测。研究结果表明:测试样本的预测结果与实测值变化趋势基本一致,其平均绝对误差为0.234 mm/d,均方差和判定系数分别为0.163和0.520。粗糙集理论在分析滑坡变形特征、筛选关键因子方面的适用性与科学性,构建的粗糙集-粒子群优化支持向量机模型具有较高的泛化能力,是一种有效的滑坡变形预测方法。 展开更多
关键词 滑坡变形预测 粗糙集 粒子优化 支持向量
下载PDF
基于粒子群优化支持向量机的变压器故障诊断 被引量:49
17
作者 费胜巍 苗玉彬 +1 位作者 刘成良 张晓斌 《高电压技术》 EI CAS CSCD 北大核心 2009年第3期509-513,共5页
为了克服了人工神经网络(ANN)中存在的过拟合、收敛速度慢、容易陷入局部极值等缺点,提出了基于粒子群优化支持向量机(PSO-SVM)的变压器故障诊断方法,即将粒子群优化算法(PSO)用于SVM参数优化。PSO是一种智能群体搜索方法,它源于对鸟类... 为了克服了人工神经网络(ANN)中存在的过拟合、收敛速度慢、容易陷入局部极值等缺点,提出了基于粒子群优化支持向量机(PSO-SVM)的变压器故障诊断方法,即将粒子群优化算法(PSO)用于SVM参数优化。PSO是一种智能群体搜索方法,它源于对鸟类捕食行为的研究。这种方法不仅具有很强的全局搜索能力,而且容易实现,适合于SVM参数优化。变压器故障诊断实例分析结果证明,PSO-SVM的诊断精度高于IEC三比值法、BP神经网络、普通的SVM,PSO-SVM适用于电力变压器故障诊断。 展开更多
关键词 故障诊断 粒子优化 支持向量 电力变压器 参数优化 分类算法 统计学习理论
下载PDF
基于粒子群优化鲁棒支持向量回归机的中长期负荷预测 被引量:21
18
作者 张雪君 陈刚 +2 位作者 周杰 马爱军 张忠静 《电力系统保护与控制》 EI CSCD 北大核心 2009年第21期77-81,共5页
支持向量机(SVM)已经成功地应用于解决非线性回归和时间序列问题,并且已经开始用于中长期负荷预测。提出了一种基于鲁棒支持向量回归机RSVR(Robust Support Vector Regression)的中长期负荷预测的新方法。给出利用粒子群优化算法对鲁棒... 支持向量机(SVM)已经成功地应用于解决非线性回归和时间序列问题,并且已经开始用于中长期负荷预测。提出了一种基于鲁棒支持向量回归机RSVR(Robust Support Vector Regression)的中长期负荷预测的新方法。给出利用粒子群优化算法对鲁棒支持向量机系数优化选择的方法。建立基于此原理的中长期负荷预测模型,算例分析比较验证本文方法具有预测精度高、计算量小等特点和优势。 展开更多
关键词 中长期负荷预测 鲁棒性 支持向量 回归估计 粒子优化算法
下载PDF
基于粒子群优化-支持向量机方法的下肢肌电信号步态识别 被引量:20
19
作者 高发荣 王佳佳 +2 位作者 席旭刚 佘青山 罗志增 《电子与信息学报》 EI CSCD 北大核心 2015年第5期1154-1159,共6页
为提高下肢表面肌电信号步态识别的准确性和实时性,该文提出一种基于粒子群优化(PSO)算法优化支持向量机(SVM)的模式识别方法。首先对消噪后的肌电信号提取积分肌电值和方差作为特征样本,然后利用PSO算法优化SVM的惩罚参数和核函数参数... 为提高下肢表面肌电信号步态识别的准确性和实时性,该文提出一种基于粒子群优化(PSO)算法优化支持向量机(SVM)的模式识别方法。首先对消噪后的肌电信号提取积分肌电值和方差作为特征样本,然后利用PSO算法优化SVM的惩罚参数和核函数参数,最后利用步态动作的肌电信号样本数据对构造的SVM分类器进行训练、测试。实验结果表明PSO-SVM分类器对下肢正常行走5个步态的识别率,明显高于未经参数优化的SVM分类器,优化后平均识别率达到97.8%,并兼顾了分类的准确性和自适应性。 展开更多
关键词 模式识别 步态分析 肌电信号 粒子优化 支持向量
下载PDF
基于粒子群优化算法的支持向量机研究 被引量:51
20
作者 谷文成 柴宝仁 滕艳平 《北京理工大学学报》 EI CAS CSCD 北大核心 2014年第7期705-709,共5页
基于粒子群优化算法提出了一种通过优化支持向量机模型参数,建立更佳的支持向量机数学模型的方法.针对双螺旋分类问题,分别利用基于粒子群优化算法所建立的支持向量机分类器和标准支持向量机分类器进行了仿真实验,利用所建立的评价体系... 基于粒子群优化算法提出了一种通过优化支持向量机模型参数,建立更佳的支持向量机数学模型的方法.针对双螺旋分类问题,分别利用基于粒子群优化算法所建立的支持向量机分类器和标准支持向量机分类器进行了仿真实验,利用所建立的评价体系对仿真实验所获得的实验数据进行了评估,评估结果表明基于粒子群优化算法的支持向量机分类器明显优于标准支持向量机分类器,其分类结果表明基于粒子群优化算法的支持向量机分类器提高了分类结果的准确性,同时也验证了基于粒子群优化算法的支持向量机分类器在数据分类中的有效性. 展开更多
关键词 粒子优化算法(PSO) 支持向量(SVM) 优化 双螺旋分类 评价
下载PDF
上一页 1 2 62 下一页 到第
使用帮助 返回顶部