To extract region of interests (ROI) in brain magnetic resonance imaging (MRI) with more than two objects and improve the segmentation accuracy, a hybrid model of a kemel-based fuzzy c-means (KFCM) clustering al...To extract region of interests (ROI) in brain magnetic resonance imaging (MRI) with more than two objects and improve the segmentation accuracy, a hybrid model of a kemel-based fuzzy c-means (KFCM) clustering algorithm and Chan-Vese (CV) model for brain MRI segmentation is proposed. The approach consists of two succes- sive stages. Firstly, the KFCM is used to make a coarse segmentation, which achieves the automatic selection of initial contour. Then an improved CV model is utilized to subdivide the image. Fuzzy membership degree from KFCM clus- tering is incorporated into the fidelity term of the 2-phase piecewise constant CV model to obtain accurate multi-object segmentation. Experimental results show that the proposed model has advantages both in accuracy and in robustness to noise in comparison with fuzzy c-means (FCM) clustering, KFCM, and the hybrid model of FCM and CV on brain MRI segmentation.展开更多
Data aggregation from various web sources is very significant for web data analysis domain. In ad- dition, the recognition of coherence micro cluster is one of the most interesting issues in the field of data aggregat...Data aggregation from various web sources is very significant for web data analysis domain. In ad- dition, the recognition of coherence micro cluster is one of the most interesting issues in the field of data aggregation. Until now, many algorithms have been proposed to work on this issue. However, the deficiency of these solutions is that they cannot recognize the micro-cluster data stream accurately. A semantic-based coherent micro-cluster recognition algorithm for hybrid web data stream is nronosed.Firstly, an objective function is proposed to recognize the coherence micro-cluster and then the coher- ence micro-cluster recognition algorithm for hybrid web data stream based on semantic is raised. Fi-展开更多
The selection of refracturing candidate is one of the most important jobs faced by oilfield engineers. However, due to the complicated multi-parameter relationships and their comprehensive influence, the selection of ...The selection of refracturing candidate is one of the most important jobs faced by oilfield engineers. However, due to the complicated multi-parameter relationships and their comprehensive influence, the selection of refracturing candidate is often very difficult. In this paper, a novel approach combining data analysis techniques and fuzzy clustering was proposed to select refracturing candidate. First, the analysis techniques were used to quantitatively calculate the weight coefficient and determine the key factors. Then, the idealized refracturing well was established by considering the main factors. Fuzzy clustering was applied to evaluate refracturing potential. Finally, reservoirs numerical simulation was used to further evaluate reservoirs energy and material basis of the optimum refracturing candidates. The hybrid method has been successfully applied to a tight oil reservoir in China. The average steady production was 15.8 t/d after refracturing treatment, increasing significantly compared with previous status. The research results can guide the development of tight oil and gas reservoirs effectively.展开更多
This paper provides an overview of the main recommendations and approaches of the methodology on parallel computation application development for hybrid structures. This methodology was developed within the master's ...This paper provides an overview of the main recommendations and approaches of the methodology on parallel computation application development for hybrid structures. This methodology was developed within the master's thesis project "Optimization of complex tasks' computation on hybrid distributed computational structures" accomplished by Orekhov during which the main research objective was the determination of" patterns of the behavior of scaling efficiency and other parameters which define performance of different algorithms' implementations executed on hybrid distributed computational structures. Major outcomes and dependencies obtained within the master's thesis project were formed into a methodology which covers the problems of applications based on parallel computations and describes the process of its development in details, offering easy ways of avoiding potentially crucial problems. The paper is backed by the real-life examples such as clustering algorithms instead of artificial benchmarks.展开更多
The K-means algorithm is one of the most popular techniques in clustering. Nevertheless, the performance of the Kmeans algorithm depends highly on initial cluster centers and converges to local minima. This paper prop...The K-means algorithm is one of the most popular techniques in clustering. Nevertheless, the performance of the Kmeans algorithm depends highly on initial cluster centers and converges to local minima. This paper proposes a hybrid evolutionary programming based clustering algorithm, called PSO-SA, by combining particle swarm optimization (PSO) and simulated annealing (SA). The basic idea is to search around the global solution by SA and to increase the information exchange among particles using a mutation operator to escape local optima. Three datasets, Iris, Wisconsin Breast Cancer, and Ripley's Glass, have been considered to show the effectiveness of the proposed clustering algorithm in providing optimal clusters. The simulation results show that the PSO-SA clustering algorithm not only has a better response but also converges more quickly than the K-means, PSO, and SA algorithms.展开更多
Dual clustering performs object clustering in both spatial and non-spatial domains that cannot be dealt with well by traditional clustering methods.However,recent dual clustering research has often omitted spatial out...Dual clustering performs object clustering in both spatial and non-spatial domains that cannot be dealt with well by traditional clustering methods.However,recent dual clustering research has often omitted spatial outliers,subjectively determined the weights of hybrid distance measures,and produced diverse clustering results.In this study,we first redefined the dual clustering problem and related concepts to highlight the clustering criteria.We then presented a self-organizing dual clustering algorithm (SDC) based on the self-organizing feature map and certain spatial analysis operations,including the Voronoi diagram and polygon aggregation and amalgamation.The algorithm employs a hybrid distance measure that combines geometric distance and non-spatial similarity,while the clustering spectrum analysis helps to determine the weight of non-spatial similarity in the measure.A case study was conducted on a spatial database of urban land price samples in Wuhan,China.SDC detected spatial outliers and clustered the points into spatially connective and attributively homogenous sub-groups.In particular,SDC revealed zonal areas that describe the actual distribution of land prices but were not demonstrated by other methods.SDC reduced the subjectivity in dual clustering.展开更多
基金Supported by National Natural Science Foundation of China (No. 60872065)
文摘To extract region of interests (ROI) in brain magnetic resonance imaging (MRI) with more than two objects and improve the segmentation accuracy, a hybrid model of a kemel-based fuzzy c-means (KFCM) clustering algorithm and Chan-Vese (CV) model for brain MRI segmentation is proposed. The approach consists of two succes- sive stages. Firstly, the KFCM is used to make a coarse segmentation, which achieves the automatic selection of initial contour. Then an improved CV model is utilized to subdivide the image. Fuzzy membership degree from KFCM clus- tering is incorporated into the fidelity term of the 2-phase piecewise constant CV model to obtain accurate multi-object segmentation. Experimental results show that the proposed model has advantages both in accuracy and in robustness to noise in comparison with fuzzy c-means (FCM) clustering, KFCM, and the hybrid model of FCM and CV on brain MRI segmentation.
基金Supported by the National High Technology Research and Development Programme of China(No.2011AA120300,2011AA120302)the National Key Technology Support Program of China(No.2013BAH66F02)
文摘Data aggregation from various web sources is very significant for web data analysis domain. In ad- dition, the recognition of coherence micro cluster is one of the most interesting issues in the field of data aggregation. Until now, many algorithms have been proposed to work on this issue. However, the deficiency of these solutions is that they cannot recognize the micro-cluster data stream accurately. A semantic-based coherent micro-cluster recognition algorithm for hybrid web data stream is nronosed.Firstly, an objective function is proposed to recognize the coherence micro-cluster and then the coher- ence micro-cluster recognition algorithm for hybrid web data stream based on semantic is raised. Fi-
基金Projects(51204054,51504203)supported by the National Natural Science Foundation of ChinaProject(2016ZX05023-001)supported by the National Science and Technology Major Project of China
文摘The selection of refracturing candidate is one of the most important jobs faced by oilfield engineers. However, due to the complicated multi-parameter relationships and their comprehensive influence, the selection of refracturing candidate is often very difficult. In this paper, a novel approach combining data analysis techniques and fuzzy clustering was proposed to select refracturing candidate. First, the analysis techniques were used to quantitatively calculate the weight coefficient and determine the key factors. Then, the idealized refracturing well was established by considering the main factors. Fuzzy clustering was applied to evaluate refracturing potential. Finally, reservoirs numerical simulation was used to further evaluate reservoirs energy and material basis of the optimum refracturing candidates. The hybrid method has been successfully applied to a tight oil reservoir in China. The average steady production was 15.8 t/d after refracturing treatment, increasing significantly compared with previous status. The research results can guide the development of tight oil and gas reservoirs effectively.
文摘This paper provides an overview of the main recommendations and approaches of the methodology on parallel computation application development for hybrid structures. This methodology was developed within the master's thesis project "Optimization of complex tasks' computation on hybrid distributed computational structures" accomplished by Orekhov during which the main research objective was the determination of" patterns of the behavior of scaling efficiency and other parameters which define performance of different algorithms' implementations executed on hybrid distributed computational structures. Major outcomes and dependencies obtained within the master's thesis project were formed into a methodology which covers the problems of applications based on parallel computations and describes the process of its development in details, offering easy ways of avoiding potentially crucial problems. The paper is backed by the real-life examples such as clustering algorithms instead of artificial benchmarks.
文摘The K-means algorithm is one of the most popular techniques in clustering. Nevertheless, the performance of the Kmeans algorithm depends highly on initial cluster centers and converges to local minima. This paper proposes a hybrid evolutionary programming based clustering algorithm, called PSO-SA, by combining particle swarm optimization (PSO) and simulated annealing (SA). The basic idea is to search around the global solution by SA and to increase the information exchange among particles using a mutation operator to escape local optima. Three datasets, Iris, Wisconsin Breast Cancer, and Ripley's Glass, have been considered to show the effectiveness of the proposed clustering algorithm in providing optimal clusters. The simulation results show that the PSO-SA clustering algorithm not only has a better response but also converges more quickly than the K-means, PSO, and SA algorithms.
基金supported by the National Natural Science Foundation of China(Grant No.40901188)the Key Laboratory of Geo-informatics of the State Bureau of Surveying and Mapping(Grant No.200906)the Fundamental Research Funds for the Central Universities(Grant No.4082002)
文摘Dual clustering performs object clustering in both spatial and non-spatial domains that cannot be dealt with well by traditional clustering methods.However,recent dual clustering research has often omitted spatial outliers,subjectively determined the weights of hybrid distance measures,and produced diverse clustering results.In this study,we first redefined the dual clustering problem and related concepts to highlight the clustering criteria.We then presented a self-organizing dual clustering algorithm (SDC) based on the self-organizing feature map and certain spatial analysis operations,including the Voronoi diagram and polygon aggregation and amalgamation.The algorithm employs a hybrid distance measure that combines geometric distance and non-spatial similarity,while the clustering spectrum analysis helps to determine the weight of non-spatial similarity in the measure.A case study was conducted on a spatial database of urban land price samples in Wuhan,China.SDC detected spatial outliers and clustered the points into spatially connective and attributively homogenous sub-groups.In particular,SDC revealed zonal areas that describe the actual distribution of land prices but were not demonstrated by other methods.SDC reduced the subjectivity in dual clustering.