期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于混合自动编码器道路语义分割方法研究 被引量:2
1
作者 周飞 唐建 +1 位作者 杨成松 芮挺 《计算机工程与科学》 CSCD 北大核心 2019年第8期1453-1458,共6页
道路检测是无人驾驶汽车环境感知的重要环节,利用计算机视觉技术实现对环境场景的语义分割是确保无人驾驶汽车安全行驶的关键技术之一。提出一种稀疏自动编码器和去噪自动编码器相结合的混合自动编码器语义分割模型,利用稀疏自动编码器... 道路检测是无人驾驶汽车环境感知的重要环节,利用计算机视觉技术实现对环境场景的语义分割是确保无人驾驶汽车安全行驶的关键技术之一。提出一种稀疏自动编码器和去噪自动编码器相结合的混合自动编码器语义分割模型,利用稀疏自动编码器的稀疏性语义编码和去噪自动编码器鲁棒的语义编码,使混合模型学习的特征更有利于图像的语义分割。通过建立一种合理的模型排列顺序与堆叠形式,实现对图像语义的优化选择,从而建立一个具有深度的“富结构”语义分割模型,进一步提高语义分割性能。实验表明,本文所提模型更为简单、训练周期短,具有较好的综合图像分割性能。 展开更多
关键词 道路检测 语义分割 混合自动编码器 富结构
下载PDF
基于深层内嵌混合稀疏堆栈自动编码器和流形集成的精神病语音识别方法 被引量:1
2
作者 张毅 秦小林 +4 位作者 林远 李勇明 王品 张祖伟 李小飞 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2021年第4期655-662,共8页
语音特征学习是精神病语音识别方法的核心和关键。深层特征学习可以自动提取语音特征,但受限于小样本问题;传统的特征提取(原始特征)避免小样本问题影响,但严重依赖经验且自适应不佳。为了解决这一问题,本文提出了一种深层内嵌混合稀疏... 语音特征学习是精神病语音识别方法的核心和关键。深层特征学习可以自动提取语音特征,但受限于小样本问题;传统的特征提取(原始特征)避免小样本问题影响,但严重依赖经验且自适应不佳。为了解决这一问题,本文提出了一种深层内嵌混合稀疏堆栈自动编码器流形集成算法。首先,基于先验知识提取精神病语音特征,构造原始特征。其次,将原始特征内嵌入到稀疏堆栈自动编码器(深度网络)中,对隐藏层的输出进行滤波,增强深层特征与原始特征的互补性。再次,设计L1正则化特征选择机制,压缩由深层特征和原始特征组成的混合特征集的维度。最后,设计了加权局部保持投影算法和集成学习机制,构造了流形投影分类器集成模型,进一步提高了小样本下特征融合的分类稳定性。此外,本文首次设计了一个中大规模的精神病语音采集方案,收集并构建了一个大规模的中文精神病语音数据库,用于精神病语音识别算法的验证。实验结果表明,该算法主要创新部分有效;与其他有代表性的算法相比具有更好的分类准确率,最大改善了3.3%。综上所述,本文提出了一种基于深层内嵌混合稀疏堆栈自动编码器和流形集成的精神病语音识别方法,有效提高了精神病语音识别准确率。 展开更多
关键词 精神病语音识别 深层内嵌混合特征稀疏堆栈自动编码器 L1正则化 特征融合 流形集成
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部