极化码与混合自动请求重传结合的传输方案适用于物联网应用的短数据包场景。现有的极化码与蔡司合并结合的传输方案能够提供合并增益,但并未提供编码增益。极化码与增量冗余结合的传输方案能够获得更好的性能,但计算复杂度较高,不适用...极化码与混合自动请求重传结合的传输方案适用于物联网应用的短数据包场景。现有的极化码与蔡司合并结合的传输方案能够提供合并增益,但并未提供编码增益。极化码与增量冗余结合的传输方案能够获得更好的性能,但计算复杂度较高,不适用于短数据包场景。该文提出一种改进型极化码与混合自动请求重传结合的传输方案。与现有的极化码与蔡司合并结合的传输方案相比,当码率为1/2、重传次数为1时,该方案能够获得额外的0.7 d B的编码增益,与码率为1/4的极化码性能相近。该文所提方案的编译码复杂度相比于码率为1/4的极化码,降低了50%的复杂度。仿真结果验证了该方案的有效性。展开更多
现有蜂窝5G/B5G高可靠低时延通信(ultra-reliable and low latency communications,URLLC)标准3GPP Release 17-18采用经典正交频分复用(OFDM)多载波波形传输,因其工作在授权频带,较少考虑URLLCOFDM多载波传输抗干扰策略。未来工业物联...现有蜂窝5G/B5G高可靠低时延通信(ultra-reliable and low latency communications,URLLC)标准3GPP Release 17-18采用经典正交频分复用(OFDM)多载波波形传输,因其工作在授权频带,较少考虑URLLCOFDM多载波传输抗干扰策略。未来工业物联网异构多服务质量(quality of service,QoS)业务大部分部署于非授权频带,其无线通信链路变得复杂,现有URLLC-OFDM波形无法完全为工业物联网信息传输提供高可靠性、低时延的苛刻要求。首先,基于子载波可配置的OFDMA,将鲁棒性更高的子载波跳频(subcarrier frequency hopping,Sub-FH)技术应用于OFDMA中(即Sub-FH/OFDMA),以提高信号传输可靠性。然后,设计将Sub-FH/OFDMA波形融合到以微时隙为基本单位的调度策略中。该调度策略采用Hamming编码+微时隙结合的混合自动重传请求(HARQ)机制,有效降低端到端传输的重传次数,旨在提升节点传输的实时性。并推导了信息误码(块)率与重传次数的折中理论关系。仿真结果表明,在面对外部电磁干扰和内部多用户干扰时,该方案能够保障物联网节点的稳定传输质量,并在目标误块率为10-5时实现毫秒级短数据包的传输时延。通过波形设计和MAC时隙调度的跨层级设计,为未来B5G/6G通信在复杂工业物联网场景中的实际应用提供了可行解决方案。展开更多
文摘极化码与混合自动请求重传结合的传输方案适用于物联网应用的短数据包场景。现有的极化码与蔡司合并结合的传输方案能够提供合并增益,但并未提供编码增益。极化码与增量冗余结合的传输方案能够获得更好的性能,但计算复杂度较高,不适用于短数据包场景。该文提出一种改进型极化码与混合自动请求重传结合的传输方案。与现有的极化码与蔡司合并结合的传输方案相比,当码率为1/2、重传次数为1时,该方案能够获得额外的0.7 d B的编码增益,与码率为1/4的极化码性能相近。该文所提方案的编译码复杂度相比于码率为1/4的极化码,降低了50%的复杂度。仿真结果验证了该方案的有效性。
文摘现有蜂窝5G/B5G高可靠低时延通信(ultra-reliable and low latency communications,URLLC)标准3GPP Release 17-18采用经典正交频分复用(OFDM)多载波波形传输,因其工作在授权频带,较少考虑URLLCOFDM多载波传输抗干扰策略。未来工业物联网异构多服务质量(quality of service,QoS)业务大部分部署于非授权频带,其无线通信链路变得复杂,现有URLLC-OFDM波形无法完全为工业物联网信息传输提供高可靠性、低时延的苛刻要求。首先,基于子载波可配置的OFDMA,将鲁棒性更高的子载波跳频(subcarrier frequency hopping,Sub-FH)技术应用于OFDMA中(即Sub-FH/OFDMA),以提高信号传输可靠性。然后,设计将Sub-FH/OFDMA波形融合到以微时隙为基本单位的调度策略中。该调度策略采用Hamming编码+微时隙结合的混合自动重传请求(HARQ)机制,有效降低端到端传输的重传次数,旨在提升节点传输的实时性。并推导了信息误码(块)率与重传次数的折中理论关系。仿真结果表明,在面对外部电磁干扰和内部多用户干扰时,该方案能够保障物联网节点的稳定传输质量,并在目标误块率为10-5时实现毫秒级短数据包的传输时延。通过波形设计和MAC时隙调度的跨层级设计,为未来B5G/6G通信在复杂工业物联网场景中的实际应用提供了可行解决方案。