提出了一类用于非线性时间序列建模的混合自回归滑动平均模型(MARMA).该模型是由K个平稳或非平稳的ARMA分量经过混合得到的.讨论了MARMA模型的平稳性条件和自相关函数.给出了MARMA模型参数估计的期望极大化(expectation maximization)算...提出了一类用于非线性时间序列建模的混合自回归滑动平均模型(MARMA).该模型是由K个平稳或非平稳的ARMA分量经过混合得到的.讨论了MARMA模型的平稳性条件和自相关函数.给出了MARMA模型参数估计的期望极大化(expectation maximization)算法.运用贝叶斯信息准则(Bayes information criterion)来选择该模型.MARMA模型分布形式富于变化的特征使得它能够对具有多峰分布以及条件异方差的序列进行建模.通过两个实例验证了该模型,并和其他模型进行比较,结果表明MARMA模型能够更好地描述这些数据的特征.展开更多
目的通过构建时间序列自回归移动平均模型(autoregressive integrated moving average model,ARIMA),对手足口发病趋势进行预测,探讨该模型在发病预测中的应用。方法从疾病监测信息报告管理系统提取北京市朝阳区2010年1月-2016年12月手...目的通过构建时间序列自回归移动平均模型(autoregressive integrated moving average model,ARIMA),对手足口发病趋势进行预测,探讨该模型在发病预测中的应用。方法从疾病监测信息报告管理系统提取北京市朝阳区2010年1月-2016年12月手足口病月发病数据。建立ARIMA季节乘积模型,对2010年1月-2015年12月的月发病数进行拟合,再以2016年1-12月的月发病数作为验证数据,评价其预测效果。结果通过对模型进行拟合优度及残差序列进行白噪声检验,最后选择了ARIMA(1,0,0)(1,1,0)_(12)为最佳模型。对2016年1-12月发病数进行预测,实际发病数均落入95%CI内,平均相对误差为49.37%。模型中加入2016年1-6月的月实际发病数,预测2016年7-12月的月发病数,平均相对误差为18.12%。结论 ARIMA季节模型可应用于手足口病等具有季节性变动特征的传染病预测。ARIMA模型短期预测手足口病的发病情况精度更高,可通过不断纳入新的实际观测值开展动态分析。ARIMA模型仅为一种数学工具,在实际防控及监测工作中,需要结合专业理论知识及具体情况进行分析。展开更多
文摘提出了一类用于非线性时间序列建模的混合自回归滑动平均模型(MARMA).该模型是由K个平稳或非平稳的ARMA分量经过混合得到的.讨论了MARMA模型的平稳性条件和自相关函数.给出了MARMA模型参数估计的期望极大化(expectation maximization)算法.运用贝叶斯信息准则(Bayes information criterion)来选择该模型.MARMA模型分布形式富于变化的特征使得它能够对具有多峰分布以及条件异方差的序列进行建模.通过两个实例验证了该模型,并和其他模型进行比较,结果表明MARMA模型能够更好地描述这些数据的特征.