The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to an...The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to analyze the efficiency of the algorithm. In the simulation case of the water phantom, the algorithm is applied to an inverse planning process of intensity modulated radiation treatment (IMRT). The objective functions of planning target volume (PTV) and normal tissue (NT) are based on the average dose distribution. The obtained intensity profile shows that the hybrid multi-objective gradient algorithm saves the computational time and has good accuracy, thus meeting the requirements of practical applications.展开更多
An optimal dimension-down iterative algorithm (DDIA) is proposed for solving a mixed (continuous/ discrete) transportation network design problem (MNDP), which is generally expressed as a mathematical programmin...An optimal dimension-down iterative algorithm (DDIA) is proposed for solving a mixed (continuous/ discrete) transportation network design problem (MNDP), which is generally expressed as a mathematical programming with equilibrium constraints (MPEC). The upper level of the MNDP aims to optimize the network performance via both the expansion of existing links and the addition of new candidate links, whereas the lower level is a traditional Wardrop user equilibrium (UE) model. The idea of the proposed DDIA is to reduce the dimensions of the problem. A group of variables (discrete/continuous) are fixed to altemately optimize another group of variables (continuous/discrete). Some continuous network design problems (CNDPs) and discrete network design problems (DNDPs) are solved repeatedly until the optimal solution is obtained. A numerical example is given to demonstrate the efficiency of the proposed algorithm.展开更多
Hybrid precoding can reduce the number of required radio frequency(RF)chains in millimeter-Wave(mmWave) massive MIMO systems. However, existing hybrid precoding based on singular value decomposition(SVD) requires the ...Hybrid precoding can reduce the number of required radio frequency(RF)chains in millimeter-Wave(mmWave) massive MIMO systems. However, existing hybrid precoding based on singular value decomposition(SVD) requires the complicated bit allocation to match the different signal-to-noise-ratios(SNRs) of different sub-channels. In this paper,we propose a geometric mean decomposition(GMD)-based hybrid precoding to avoid the complicated bit allocation. Specifically,we seek a pair of analog and digital precoders sufficiently close to the unconstrained fully digital GMD precoder. To achieve this, we fix the analog precoder to design the digital precoder, and vice versa. The analog precoder is designed based on the orthogonal matching pursuit(OMP) algorithm, while GMD is used to obtain the digital precoder. Simulations show that the proposed GMD-based hybrid precoding achieves better performance than the conventional SVD-based hybrid precoding with only a slight increase in complexity.展开更多
The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this wor...The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.展开更多
To extend the PSRK (predictive Soave-Redlich-Kwong equation of state) model to vapor-liquid equilibria of polymer solutions, a new EOS-gE mixing rule is applied in which the term ∑ xi ln(b/bi) in the PSRK mixing rule...To extend the PSRK (predictive Soave-Redlich-Kwong equation of state) model to vapor-liquid equilibria of polymer solutions, a new EOS-gE mixing rule is applied in which the term ∑ xi ln(b/bi) in the PSRK mixing rule for the parameter a, and the combinatorial part in the original universal functional activity coefficient (UNIFAC) model are cancelled. To take into account the free volume contribution to the excess Gibbs energy in polymer solution, a quadratic mixing rule for the cross co-volume bij with an exponent equals to 1/2 is applied[bij1/2= 1/2(bi1/2+bj1/2)]. The literature reported Soave-Redlich-Kwong equation of state (SRK EOS) parameters ofpure polymer are employed. The PSRK model with the modified mixing rule is used to predict the vapor-liquid equilibrium (VLE) of 37 solvent-polymer systems over a large range of temperature and pressure with satisfactory results.展开更多
A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO c...A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO combined the exploration of ABC algorithm with the exploitation of BBO algorithm effectively, and hence it can generate the promising candidate individuals. The proposed hybrid algorithm speeds up the convergence and improves the algorithm's performance. Several benchmark test functions and mechanical design problems are applied to verifying the effects of these improvements and it is demonstrated that the performance of this proposed ABC-BBO is superior to or at least highly competitive with other population-based optimization approaches.展开更多
In this paper, an evolutionary recursive Bayesian estimation algorithm is presented, which incorporates the latest observation with a new proposal distribution, and the posterior state density is represented by a Gaus...In this paper, an evolutionary recursive Bayesian estimation algorithm is presented, which incorporates the latest observation with a new proposal distribution, and the posterior state density is represented by a Gaussian mixture model that is recovered from the weighted particle set of the measurement update step by means of a weighted expectation-maximization algorithm. This step replaces the resampling stage needed by most particle filters and relieves the effect caused by sample impoverishment. A nonlinear tracking problem shows that this new approach outperforms other related particle filters.展开更多
A proper control and management of dust dispersion is essential to ensure safe and productive underground working environment. Brattice installation to direct the flow from main shaft to the mining face was found to b...A proper control and management of dust dispersion is essential to ensure safe and productive underground working environment. Brattice installation to direct the flow from main shaft to the mining face was found to be the most effective method to disperse dust particle away from the mining face. However,it limits the movement and disturbs the flexibility of the mining fleets and operators at the tunnel. This study proposes a hybrid brattice system- a combination of a physical brattice together with suitable and flexible directed and located air curtains- to mitigate dust dispersion from the mining face and reduce dust concentration to a safe level for the working operators. A validated three-dimensional computational fluid dynamic model utilizing Eulerian–Lagrangian approach is employed to track the dispersion of dust particle. Several possible hybrid brattice scenarios are evaluated with the objective to improve dust management in underground mine. The results suggest that implementation of hybrid brattice is beneficial for the mining operation: up to three times lower dust concentration is achieved as compared to that of the physical brattice without air curtain.展开更多
Large high-dimensional data have posed great challenges to existing algorithms for frequent itemsets mining.To solve the problem,a hybrid method,consisting of a novel row enumeration algorithm and a column enumeration...Large high-dimensional data have posed great challenges to existing algorithms for frequent itemsets mining.To solve the problem,a hybrid method,consisting of a novel row enumeration algorithm and a column enumeration algorithm,is proposed.The intention of the hybrid method is to decompose the mining task into two subtasks and then choose appropriate algorithms to solve them respectively.The novel algorithm,i.e.,Inter-transaction is based on the characteristic that there are few common items between or among long transactions.In addition,an optimization technique is adopted to improve the performance of the intersection of bit-vectors.Experiments on synthetic data show that our method achieves high performance in large high-dimensional data.展开更多
The hybrid genetic algorithm is utilized to facilitate model parameter estimation.The tri-dimensional compression tests of soil are performed to supply experimental data for identifying nonlinear constitutive model of...The hybrid genetic algorithm is utilized to facilitate model parameter estimation.The tri-dimensional compression tests of soil are performed to supply experimental data for identifying nonlinear constitutive model of soil.In order to save computing time during parameter inversion,a new procedure to compute the calculated strains is presented by multi-linear simplification approach instead of finite element method(FEM).The real-coded hybrid genetic algorithm is developed by combining normal genetic algorithm with gradient-based optimization algorithm.The numerical and experimental results for conditioned soil are compared.The forecast strains based on identified nonlinear constitutive model of soil agree well with observed ones.The effectiveness and accuracy of proposed parameter estimation approach are validated.展开更多
Conventionally, multiple reference frame(MRF) method and sliding mesh(SM) method are used in the simulation of stirred tanks, however, both methods have limitations. In this study, a hybrid immersed-boundary(IB)techni...Conventionally, multiple reference frame(MRF) method and sliding mesh(SM) method are used in the simulation of stirred tanks, however, both methods have limitations. In this study, a hybrid immersed-boundary(IB)technique is developed in a finite difference context for the numerical simulation of stirred tanks. IBs based on Lagrangian markers and solid volume fractions are used for moving and stationary boundaries, respectively, to achieve optimal efficiency and accuracy. To cope with the high computational cost in the simulation of stirred tanks, the technique is implemented on computers with hybrid architecture where central processing units(CPUs) and graphics processing units(GPUs) are used together. The accuracy and efficiency of the present technique are first demonstrated in a relatively simple case, and then the technique is applied to the simulation of turbulent flow in a Rushton stirred tank with large eddy simulation(LES). Finally the proposed methodology is coupled with discrete element method(DEM) to accomplish particle-resolved simulation of solid suspensions in small stirred tanks. It demonstrates that the proposed methodology is a promising tool in simulating turbulent flow in stirred tanks with complex geometries.展开更多
In order to verify the validity of finite element numerical simulation method for asphalt mixture, which consists of aggregates, mastic (where mastic is a kind of fine mixture composed of asphalt binder mixed with fi...In order to verify the validity of finite element numerical simulation method for asphalt mixture, which consists of aggregates, mastic (where mastic is a kind of fine mixture composed of asphalt binder mixed with fines and fine aggregates) and air voids, based on three-dimensional (3D) heterogeneous specimen, X-ray computerized tomography (X-ray CT) was used to scan the asphalt specimens to obtain the real internal microstrnctures of asphalt mixture. CT images were reconstructed to build up 3D digital specimen, and the viscoelastic properties of mastic were described with Burgers model The uniaxial creep numerical simulations of three different levels of aggregate gradation were conducted. The simulation results agree well with the experimental results. The numerical simulation of asphalt mixture incorporated with real 3D microstructure based on finite element method is a promising application to conduct research of asphalt concrete. Additionally, this method can increase the mechanistic understanding of global viscoelastic properties of asphalt mixtures by linking the real 3D microstructure.展开更多
基金Supported by the National Basic Research Program of China ("973" Program)the National Natural Science Foundation of China (60872112, 10805012)+1 种基金the Natural Science Foundation of Zhejiang Province(Z207588)the College Science Research Project of Anhui Province (KJ2008B268)~~
文摘The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to analyze the efficiency of the algorithm. In the simulation case of the water phantom, the algorithm is applied to an inverse planning process of intensity modulated radiation treatment (IMRT). The objective functions of planning target volume (PTV) and normal tissue (NT) are based on the average dose distribution. The obtained intensity profile shows that the hybrid multi-objective gradient algorithm saves the computational time and has good accuracy, thus meeting the requirements of practical applications.
基金The National Natural Science Foundation of China(No. 50908235 )China Postdoctoral Science Foundation (No.201003520)
文摘An optimal dimension-down iterative algorithm (DDIA) is proposed for solving a mixed (continuous/ discrete) transportation network design problem (MNDP), which is generally expressed as a mathematical programming with equilibrium constraints (MPEC). The upper level of the MNDP aims to optimize the network performance via both the expansion of existing links and the addition of new candidate links, whereas the lower level is a traditional Wardrop user equilibrium (UE) model. The idea of the proposed DDIA is to reduce the dimensions of the problem. A group of variables (discrete/continuous) are fixed to altemately optimize another group of variables (continuous/discrete). Some continuous network design problems (CNDPs) and discrete network design problems (DNDPs) are solved repeatedly until the optimal solution is obtained. A numerical example is given to demonstrate the efficiency of the proposed algorithm.
基金supported by the National Natural Science Foundation of China for Outstanding Young Scholars (Grant No. 61722109)the National Natural Science Foundation of China (Grant No. 61571270)the Royal Academy of Engineering through the UK–China Industry Academia Partnership Programme Scheme (Grant No. UK-CIAPP\49)
文摘Hybrid precoding can reduce the number of required radio frequency(RF)chains in millimeter-Wave(mmWave) massive MIMO systems. However, existing hybrid precoding based on singular value decomposition(SVD) requires the complicated bit allocation to match the different signal-to-noise-ratios(SNRs) of different sub-channels. In this paper,we propose a geometric mean decomposition(GMD)-based hybrid precoding to avoid the complicated bit allocation. Specifically,we seek a pair of analog and digital precoders sufficiently close to the unconstrained fully digital GMD precoder. To achieve this, we fix the analog precoder to design the digital precoder, and vice versa. The analog precoder is designed based on the orthogonal matching pursuit(OMP) algorithm, while GMD is used to obtain the digital precoder. Simulations show that the proposed GMD-based hybrid precoding achieves better performance than the conventional SVD-based hybrid precoding with only a slight increase in complexity.
基金Projects(61573144,61773165,61673175,61174040)supported by the National Natural Science Foundation of ChinaProject(222201717006)supported by the Fundamental Research Funds for the Central Universities,China
文摘The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.
文摘To extend the PSRK (predictive Soave-Redlich-Kwong equation of state) model to vapor-liquid equilibria of polymer solutions, a new EOS-gE mixing rule is applied in which the term ∑ xi ln(b/bi) in the PSRK mixing rule for the parameter a, and the combinatorial part in the original universal functional activity coefficient (UNIFAC) model are cancelled. To take into account the free volume contribution to the excess Gibbs energy in polymer solution, a quadratic mixing rule for the cross co-volume bij with an exponent equals to 1/2 is applied[bij1/2= 1/2(bi1/2+bj1/2)]. The literature reported Soave-Redlich-Kwong equation of state (SRK EOS) parameters ofpure polymer are employed. The PSRK model with the modified mixing rule is used to predict the vapor-liquid equilibrium (VLE) of 37 solvent-polymer systems over a large range of temperature and pressure with satisfactory results.
基金Projects(61463009,11264005,11361014)supported by the National Natural Science Foundation of ChinaProject([2013]2082)supported by the Science Technology Foundation of Guizhou Province,China
文摘A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO combined the exploration of ABC algorithm with the exploitation of BBO algorithm effectively, and hence it can generate the promising candidate individuals. The proposed hybrid algorithm speeds up the convergence and improves the algorithm's performance. Several benchmark test functions and mechanical design problems are applied to verifying the effects of these improvements and it is demonstrated that the performance of this proposed ABC-BBO is superior to or at least highly competitive with other population-based optimization approaches.
基金Sponsored by the National Security Major Basic Research Project of China(Grant No.973 -61334)
文摘In this paper, an evolutionary recursive Bayesian estimation algorithm is presented, which incorporates the latest observation with a new proposal distribution, and the posterior state density is represented by a Gaussian mixture model that is recovered from the weighted particle set of the measurement update step by means of a weighted expectation-maximization algorithm. This step replaces the resampling stage needed by most particle filters and relieves the effect caused by sample impoverishment. A nonlinear tracking problem shows that this new approach outperforms other related particle filters.
基金financially supported by the Singapore Economic Development Board(EDB)through the Minerals Metals and Materials Technology Centre(M3TC)Research Grant R-261-501-013-414
文摘A proper control and management of dust dispersion is essential to ensure safe and productive underground working environment. Brattice installation to direct the flow from main shaft to the mining face was found to be the most effective method to disperse dust particle away from the mining face. However,it limits the movement and disturbs the flexibility of the mining fleets and operators at the tunnel. This study proposes a hybrid brattice system- a combination of a physical brattice together with suitable and flexible directed and located air curtains- to mitigate dust dispersion from the mining face and reduce dust concentration to a safe level for the working operators. A validated three-dimensional computational fluid dynamic model utilizing Eulerian–Lagrangian approach is employed to track the dispersion of dust particle. Several possible hybrid brattice scenarios are evaluated with the objective to improve dust management in underground mine. The results suggest that implementation of hybrid brattice is beneficial for the mining operation: up to three times lower dust concentration is achieved as compared to that of the physical brattice without air curtain.
基金The work was supported in part by Research Fund for the Doctoral Program of Higher Education of China(No.20060255006)
文摘Large high-dimensional data have posed great challenges to existing algorithms for frequent itemsets mining.To solve the problem,a hybrid method,consisting of a novel row enumeration algorithm and a column enumeration algorithm,is proposed.The intention of the hybrid method is to decompose the mining task into two subtasks and then choose appropriate algorithms to solve them respectively.The novel algorithm,i.e.,Inter-transaction is based on the characteristic that there are few common items between or among long transactions.In addition,an optimization technique is adopted to improve the performance of the intersection of bit-vectors.Experiments on synthetic data show that our method achieves high performance in large high-dimensional data.
基金Project(2007CB714006) supported by the National Basic Research Program of China Project(90815023) supported by the National Natural Science Foundation of China
文摘The hybrid genetic algorithm is utilized to facilitate model parameter estimation.The tri-dimensional compression tests of soil are performed to supply experimental data for identifying nonlinear constitutive model of soil.In order to save computing time during parameter inversion,a new procedure to compute the calculated strains is presented by multi-linear simplification approach instead of finite element method(FEM).The real-coded hybrid genetic algorithm is developed by combining normal genetic algorithm with gradient-based optimization algorithm.The numerical and experimental results for conditioned soil are compared.The forecast strains based on identified nonlinear constitutive model of soil agree well with observed ones.The effectiveness and accuracy of proposed parameter estimation approach are validated.
基金Supported by the National Natural Science Foundation of China(21225628,51106168,11272312)the“Strategic Priority Research Program”of the Chinese Academy of Sciences(XDA07080000)
文摘Conventionally, multiple reference frame(MRF) method and sliding mesh(SM) method are used in the simulation of stirred tanks, however, both methods have limitations. In this study, a hybrid immersed-boundary(IB)technique is developed in a finite difference context for the numerical simulation of stirred tanks. IBs based on Lagrangian markers and solid volume fractions are used for moving and stationary boundaries, respectively, to achieve optimal efficiency and accuracy. To cope with the high computational cost in the simulation of stirred tanks, the technique is implemented on computers with hybrid architecture where central processing units(CPUs) and graphics processing units(GPUs) are used together. The accuracy and efficiency of the present technique are first demonstrated in a relatively simple case, and then the technique is applied to the simulation of turbulent flow in a Rushton stirred tank with large eddy simulation(LES). Finally the proposed methodology is coupled with discrete element method(DEM) to accomplish particle-resolved simulation of solid suspensions in small stirred tanks. It demonstrates that the proposed methodology is a promising tool in simulating turbulent flow in stirred tanks with complex geometries.
基金Project(51038004) supported by the National Natural Science Foundation of China
文摘In order to verify the validity of finite element numerical simulation method for asphalt mixture, which consists of aggregates, mastic (where mastic is a kind of fine mixture composed of asphalt binder mixed with fines and fine aggregates) and air voids, based on three-dimensional (3D) heterogeneous specimen, X-ray computerized tomography (X-ray CT) was used to scan the asphalt specimens to obtain the real internal microstrnctures of asphalt mixture. CT images were reconstructed to build up 3D digital specimen, and the viscoelastic properties of mastic were described with Burgers model The uniaxial creep numerical simulations of three different levels of aggregate gradation were conducted. The simulation results agree well with the experimental results. The numerical simulation of asphalt mixture incorporated with real 3D microstructure based on finite element method is a promising application to conduct research of asphalt concrete. Additionally, this method can increase the mechanistic understanding of global viscoelastic properties of asphalt mixtures by linking the real 3D microstructure.