期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
初中生短跑训练中混合训练法的运用
1
作者 马占发 《拳击与格斗》 2023年第13期64-66,共3页
短跑属于田径运动的基础内容之一,同时也是中考体育的重要测试项目之一。初中生的短跑成绩十分重要,其训练方法的选择关系到学生体质健康和运动能力的发展。通常而言,速度、力量决定着短跑成绩,所以,短跑训练要侧重于速度的训练。文章... 短跑属于田径运动的基础内容之一,同时也是中考体育的重要测试项目之一。初中生的短跑成绩十分重要,其训练方法的选择关系到学生体质健康和运动能力的发展。通常而言,速度、力量决定着短跑成绩,所以,短跑训练要侧重于速度的训练。文章重点介绍重复训练、间歇训练、混合训练等方法,并对以上方法在初中生短跑训练中的应用做了详细说明,以供参考。 展开更多
关键词 初中生 短跑训练 混合训练法
下载PDF
Online split-and-merge expec tation-maximization training of Gaussian mixture model and its optimization
2
作者 Ran Xin Zhang Yongxin 《High Technology Letters》 EI CAS 2012年第3期302-307,共6页
This paper presents a new online incremental training algorithm of Gaussian mixture model (GMM), which aims to perform the expectation-maximization(EM) training incrementally to update GMM model parameters online ... This paper presents a new online incremental training algorithm of Gaussian mixture model (GMM), which aims to perform the expectation-maximization(EM) training incrementally to update GMM model parameters online sample by sample, instead of waiting for a block of data with the sufficient size to start training as in the traditional EM procedure. The proposed method is extended from the split-and-merge EM procedure, so inherently it is also capable escaping from local maxima and reducing the chances of singularities. In the application domain, the algorithm is optimized in the context of speech processing applications. Experiments on the synthetic data show the advantage and efficiency of the new method and the results in a speech processing task also confirm the improvement of system performance. 展开更多
关键词 Gaussian mixture model (GMM) online training split-and-merge expectation-maximization(SMEM) speech processing
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部