Hybrid modeling approaches have recently been investigated as an attractive alternative to model fermentation processes. Normally, these approaches require estimation data to train the empirical model part of a hybrid...Hybrid modeling approaches have recently been investigated as an attractive alternative to model fermentation processes. Normally, these approaches require estimation data to train the empirical model part of a hybrid model. This may result in decreasing the generalization ability of the derived hybrid model. Therefore, a simultaneous hybrid modeling approach is presented in this paper. It transforms the training of the empirical model part into a dynamic system parameter identification problem, and thus allows training the empirical model part with only measured data. An adaptive escaping particle swarm optimization(AEPSO) algorithm with escaping and adaptive inertia weight adjustment strategies is constructed to solve the resulting parameter identification problem, and thereby accomplish the training of the empirical model part. The uniform design method is used to determine the empirical model structure. The proposed simultaneous hybrid modeling approach has been used in a lab-scale nosiheptide batch fermentation process. The results show that it is effective and leads to a more consistent model with better generalization ability when compared to existing ones. The performance of AEPSO is also demonstrated.展开更多
This study presented a hybrid model method based on proper orthogonal decomposition(POD) for flow field reconstructions and aerodynamic design optimization. The POD basis modes have better description performance in a...This study presented a hybrid model method based on proper orthogonal decomposition(POD) for flow field reconstructions and aerodynamic design optimization. The POD basis modes have better description performance in a system space compared to the widely used semi-empirical basis functions because they are obtained through singular value decomposition of the system.Instead of the widely used linear regression, nonlinear regression methods are used in the function response of the coefficients of POD basis modes. Moreover, an adaptive Latin hypercube design method with improved space filling and correlation based on a multi-objective optimization approach was employed to supply the necessary samples. Prior to design optimization, the response performance of POD-based hybrid models was first investigated and validated through flow reconstructions of both single-and multiple blade rows. Then, an inverse design was performed to approach a given spanwise flow turning distribution at the outlet of a turbine blade by changing the spanwise stagger angle, based on the hybrid model method. Finally, the span wise blade sweep of a transonic compressor rotor and the spanwise stagger angle of the stator blade of a single low-speed compressor stage were modified to reduce the flow losses with the constraints of mass flow rate, total pressure ratio, and outlet flow turning.The results are presented in detail, demonstrating the good response performance of POD-based hybrid models on missing data reconstructions and the effectiveness of POD-based hybrid model method in aerodynamic design optimization.展开更多
By handling the travel cost function artfully, the authors formulate the transportation mixed network design problem (MNDP) as a mixed-integer, nonlinear bilevel programming problem, in which the lower-level problem...By handling the travel cost function artfully, the authors formulate the transportation mixed network design problem (MNDP) as a mixed-integer, nonlinear bilevel programming problem, in which the lower-level problem, comparing with that of conventional bilevel DNDP models, is not a side constrained user equilibrium assignment problem, but a standard user equilibrium assignment problem. Then, the bilevel programming model for MNDP is reformulated as a continuous version of bilevel programming problem by the continuation method. By virtue of the optimal-value function, the lower-level assignment problem can be expressed as a nonlinear equality constraint. Therefore, the bilevel programming model for MNDP can be transformed into an equivalent single-level optimization problem. By exploring the inherent nature of the MNDP, the optimal-value function for the lower- level equilibrium assignment problem is proved to be continuously differentiable and its functional value and gradient can be obtained efficiently. Thus, a continuously differentiable but still nonconvex optimization formulation of the MNDP is created, and then a locally convergent algorithm is proposed by applying penalty function method. The inner loop of solving the subproblem is mainly to implement an Ml-or-nothing assignment. Finally, a small-scale transportation network and a large-scale network are presented to verify the proposed model and algorithm.展开更多
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120042120014)
文摘Hybrid modeling approaches have recently been investigated as an attractive alternative to model fermentation processes. Normally, these approaches require estimation data to train the empirical model part of a hybrid model. This may result in decreasing the generalization ability of the derived hybrid model. Therefore, a simultaneous hybrid modeling approach is presented in this paper. It transforms the training of the empirical model part into a dynamic system parameter identification problem, and thus allows training the empirical model part with only measured data. An adaptive escaping particle swarm optimization(AEPSO) algorithm with escaping and adaptive inertia weight adjustment strategies is constructed to solve the resulting parameter identification problem, and thereby accomplish the training of the empirical model part. The uniform design method is used to determine the empirical model structure. The proposed simultaneous hybrid modeling approach has been used in a lab-scale nosiheptide batch fermentation process. The results show that it is effective and leads to a more consistent model with better generalization ability when compared to existing ones. The performance of AEPSO is also demonstrated.
基金supported by the National Natural Science Foundation of China(Grant Nos.51676003,51206003 and 51376009)
文摘This study presented a hybrid model method based on proper orthogonal decomposition(POD) for flow field reconstructions and aerodynamic design optimization. The POD basis modes have better description performance in a system space compared to the widely used semi-empirical basis functions because they are obtained through singular value decomposition of the system.Instead of the widely used linear regression, nonlinear regression methods are used in the function response of the coefficients of POD basis modes. Moreover, an adaptive Latin hypercube design method with improved space filling and correlation based on a multi-objective optimization approach was employed to supply the necessary samples. Prior to design optimization, the response performance of POD-based hybrid models was first investigated and validated through flow reconstructions of both single-and multiple blade rows. Then, an inverse design was performed to approach a given spanwise flow turning distribution at the outlet of a turbine blade by changing the spanwise stagger angle, based on the hybrid model method. Finally, the span wise blade sweep of a transonic compressor rotor and the spanwise stagger angle of the stator blade of a single low-speed compressor stage were modified to reduce the flow losses with the constraints of mass flow rate, total pressure ratio, and outlet flow turning.The results are presented in detail, demonstrating the good response performance of POD-based hybrid models on missing data reconstructions and the effectiveness of POD-based hybrid model method in aerodynamic design optimization.
基金supported by the National Basic Research Program of China under Grant No. 2006CB705500the National Natural Science Foundation of China under Grant No. 0631001+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University Volvo Research and Educational Foundations
文摘By handling the travel cost function artfully, the authors formulate the transportation mixed network design problem (MNDP) as a mixed-integer, nonlinear bilevel programming problem, in which the lower-level problem, comparing with that of conventional bilevel DNDP models, is not a side constrained user equilibrium assignment problem, but a standard user equilibrium assignment problem. Then, the bilevel programming model for MNDP is reformulated as a continuous version of bilevel programming problem by the continuation method. By virtue of the optimal-value function, the lower-level assignment problem can be expressed as a nonlinear equality constraint. Therefore, the bilevel programming model for MNDP can be transformed into an equivalent single-level optimization problem. By exploring the inherent nature of the MNDP, the optimal-value function for the lower- level equilibrium assignment problem is proved to be continuously differentiable and its functional value and gradient can be obtained efficiently. Thus, a continuously differentiable but still nonconvex optimization formulation of the MNDP is created, and then a locally convergent algorithm is proposed by applying penalty function method. The inner loop of solving the subproblem is mainly to implement an Ml-or-nothing assignment. Finally, a small-scale transportation network and a large-scale network are presented to verify the proposed model and algorithm.